Files
EOS/tests/test_predictionabc.py
Bobby Noelte b397b5d43e fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.

This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.

The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.

This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.

* fix: automatic optimization

  Allow optimization to automatically run on configured intervals gathering all
  optimization parameters from configuration and predictions. The automatic run
  can be configured to only run prediction updates skipping the optimization.
  Extend documentaion to also cover automatic optimization. Lock automatic runs
  against runs initiated by the /optimize or other endpoints. Provide new
  endpoints to retrieve the energy management plan and the genetic solution
  of the latest automatic optimization run. Offload energy management to thread
  pool executor to keep the app more responsive during the CPU heavy optimization
  run.

* fix: EOS servers recognize environment variables on startup

  Force initialisation of EOS configuration on server startup to assure
  all sources of EOS configuration are properly set up and read. Adapt
  server tests and configuration tests to also test for environment
  variable configuration.

* fix: Remove 0.0.0.0 to localhost translation under Windows

  EOS imposed a 0.0.0.0 to localhost translation under Windows for
  convenience. This caused some trouble in user configurations. Now, as the
  default IP address configuration is 127.0.0.1, the user is responsible
  for to set up the correct Windows compliant IP address.

* fix: allow names for hosts additional to IP addresses

* fix: access pydantic model fields by class

  Access by instance is deprecated.

* fix: down sampling key_to_array

* fix: make cache clear endpoint clear all cache files

  Make /v1/admin/cache/clear clear all cache files. Before it only cleared
  expired cache files by default. Add new endpoint /v1/admin/clear-expired
  to only clear expired cache files.

* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin

  timezonefinder 8.10 got more inaccurate for timezones in europe as there is
  a common timezone. Use new package tzfpy instead which is still returning
  Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
  timezonefinder.

* fix: provider settings configuration

  Provider configuration used to be a union holding the settings for several
  providers. Pydantic union handling does not always find the correct type
  for a provider setting. This led to exceptions in specific configurations.
  Now provider settings are explicit comfiguration items for each possible
  provider. This is a breaking change as the configuration structure was
  changed.

* fix: ClearOutside weather prediction irradiance calculation

  Pvlib needs a pandas time index. Convert time index.

* fix: test config file priority

  Do not use config_eos fixture as this fixture already creates a config file.

* fix: optimization sample request documentation

  Provide all data in documentation of optimization sample request.

* fix: gitlint blocking pip dependency resolution

  Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
  Gitlint dependencies blocked pip from dependency resolution.

* fix: sync pre-commit config to actual dependency requirements

  .pre-commit-config.yaml was out of sync, also requirements-dev.txt.

* fix: missing babel in requirements.txt

  Add babel to requirements.txt

* feat: setup default device configuration for automatic optimization

  In case the parameters for automatic optimization are not fully defined a
  default configuration is setup to allow the automatic energy management
  run. The default configuration may help the user to correctly define
  the device configuration.

* feat: allow configuration of genetic algorithm parameters

  The genetic algorithm parameters for number of individuals, number of
  generations, the seed and penalty function parameters are now avaliable
  as configuration options.

* feat: allow configuration of home appliance time windows

  The time windows a home appliance is allowed to run are now configurable
  by the configuration (for /v1 API) and also by the home appliance parameters
  (for the classic /optimize API). If there is no such configuration the
  time window defaults to optimization hours, which was the standard before
  the change. Documentation on how to configure time windows is added.

* feat: standardize mesaurement keys for battery/ ev SoC measurements

  The standardized measurement keys to report battery SoC to the device
  simulations can now be retrieved from the device configuration as a
  read-only config option.

* feat: feed in tariff prediction

  Add feed in tarif predictions needed for automatic optimization. The feed in
  tariff can be retrieved as fixed feed in tarif or can be imported. Also add
  tests for the different feed in tariff providers. Extend documentation to
  cover the feed in tariff providers.

* feat: add energy management plan based on S2 standard instructions

  EOS can generate an energy management plan as a list of simple instructions.
  May be retrieved by the /v1/energy-management/plan endpoint. The instructions
  loosely follow the S2 energy management standard.

* feat: make measurement keys configurable by EOS configuration.

  The fixed measurement keys are replaced by configurable measurement keys.

* feat: make pendulum DateTime, Date, Duration types usable for pydantic models

  Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
  added to the datetimeutil utility. Remove custom made pendulum adaptations
  from EOS pydantic module. Make EOS modules use the pydantic pendulum types
  managed by the datetimeutil module instead of the core pendulum types.

* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.

  The time windows are are added to support home appliance time window
  configuration. All time classes are also pydantic models. Time is the base
  class for time definition derived from pendulum.Time.

* feat: Extend DataRecord by configurable field like data.

  Configurable field like data was added to support the configuration of
  measurement records.

* feat: Add additional information to health information

  Version information is added to the health endpoints of eos and eosDash.
  The start time of the last optimization and the latest run time of the energy
  management is added to the EOS health information.

* feat: add pydantic merge model tests

* feat: add plan tab to EOSdash

  The plan tab displays the current energy management instructions.

* feat: add predictions tab to EOSdash

  The predictions tab displays the current predictions.

* feat: add cache management to EOSdash admin tab

  The admin tab is extended by a section for cache management. It allows to
  clear the cache.

* feat: add about tab to EOSdash

  The about tab resembles the former hello tab and provides extra information.

* feat: Adapt changelog and prepare for release management

  Release management using commitizen is added. The changelog file is adapted and
  teh changelog and a description for release management is added in the
  documentation.

* feat(doc): Improve install and devlopment documentation

  Provide a more concise installation description in Readme.md and add extra
  installation page and development page to documentation.

* chore: Use memory cache for interpolation instead of dict in inverter

  Decorate calculate_self_consumption() with @cachemethod_until_update to cache
  results in memory during an energy management/ optimization run. Replacement
  of dict type caching in inverter is now possible because all optimization
  runs are properly locked and the memory cache CacheUntilUpdateStore is properly
  cleared at the start of any energy management/ optimization operation.

* chore: refactor genetic

  Refactor the genetic algorithm modules for enhanced module structure and better
  readability. Removed unnecessary and overcomplex devices singleton. Also
  split devices configuration from genetic algorithm parameters to allow further
  development independently from genetic algorithm parameter format. Move
  charge rates configuration for electric vehicles from optimization to devices
  configuration to allow to have different charge rates for different cars in
  the future.

* chore: Rename memory cache to CacheEnergyManagementStore

  The name better resembles the task of the cache to chache function and method
  results for an energy management run. Also the decorator functions are renamed
  accordingly: cachemethod_energy_management, cache_energy_management

* chore: use class properties for config/ems/prediction mixin classes

* chore: skip debug logs from mathplotlib

  Mathplotlib is very noisy in debug mode.

* chore: automatically sync bokeh js to bokeh python package

  bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.

* chore: rename hello.py to about.py

  Make hello.py the adapted EOSdash about page.

* chore: remove demo page from EOSdash

  As no the plan and prediction pages are working without configuration, the demo
  page is no longer necessary

* chore: split test_server.py for system test

  Split test_server.py to create explicit test_system.py for system tests.

* chore: move doc utils to generate_config_md.py

  The doc utils are only used in scripts/generate_config_md.py. Move it there to
  attribute for strong cohesion.

* chore: improve pydantic merge model documentation

* chore: remove pendulum warning from readme

* chore: remove GitHub discussions from contributing documentation

  Github discussions is to be replaced by Akkudoktor.net.

* chore(release): bump version to 0.1.0+dev for development

* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1

  bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.

* build(deps): bump uvicorn from 0.36.0 to 0.37.0

BREAKING CHANGE: EOS configuration changed. V1 API changed.

  - The available_charge_rates_percent configuration is removed from optimization.
    Use the new charge_rate configuration for the electric vehicle
  - Optimization configuration parameter hours renamed to horizon_hours
  - Device configuration now has to provide the number of devices and device
    properties per device.
  - Specific prediction provider configuration to be provided by explicit
    configuration item (no union for all providers).
  - Measurement keys to be provided as a list.
  - New feed in tariff providers have to be configured.
  - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
  - /v1/admin/cache/clear now clears all cache files. Use
    /v1/admin/cache/clear-expired to only clear all expired cache files.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00

441 lines
18 KiB
Python

import os
from datetime import datetime
from typing import Any, ClassVar, List, Optional, Union
import pandas as pd
import pendulum
import pytest
from pydantic import Field
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.prediction.prediction import PredictionCommonSettings
from akkudoktoreos.prediction.predictionabc import (
PredictionBase,
PredictionContainer,
PredictionProvider,
PredictionRecord,
PredictionSequence,
)
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
# Derived classes for testing
# ---------------------------
class DerivedConfig(PredictionCommonSettings):
env_var: Optional[int] = Field(default=None, description="Test config by environment var")
instance_field: Optional[str] = Field(default=None, description="Test config by instance field")
class_constant: Optional[int] = Field(default=None, description="Test config by class constant")
class DerivedBase(PredictionBase):
instance_field: Optional[str] = Field(default=None, description="Field Value")
class_constant: ClassVar[int] = 30
class DerivedRecord(PredictionRecord):
prediction_value: Optional[float] = Field(default=None, description="Prediction Value")
class DerivedSequence(PredictionSequence):
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
class DerivedPredictionProvider(PredictionProvider):
"""A concrete subclass of PredictionProvider for testing purposes."""
# overload
records: List[DerivedRecord] = Field(
default_factory=list, description="List of DerivedRecord records"
)
provider_enabled: ClassVar[bool] = False
provider_updated: ClassVar[bool] = False
@classmethod
def record_class(cls) -> Any:
return DerivedRecord
# Implement abstract methods for test purposes
def provider_id(self) -> str:
return "DerivedPredictionProvider"
def enabled(self) -> bool:
return self.provider_enabled
def _update_data(self, force_update: Optional[bool] = False) -> None:
# Simulate update logic
DerivedPredictionProvider.provider_updated = True
class DerivedPredictionContainer(PredictionContainer):
providers: List[Union[DerivedPredictionProvider, PredictionProvider]] = Field(
default_factory=list, description="List of prediction providers"
)
# Tests
# ----------
class TestPredictionBase:
@pytest.fixture
def base(self, monkeypatch):
# Provide default values for configuration
monkeypatch.setenv("EOS_PREDICTION__HOURS", "10")
derived = DerivedBase()
derived.config.reset_settings()
assert derived.config.prediction.hours == 10
return derived
def test_config_value_from_env_variable(self, base, monkeypatch):
# From Prediction Config
monkeypatch.setenv("EOS_PREDICTION__HOURS", "2")
base.config.reset_settings()
assert base.config.prediction.hours == 2
def test_config_value_from_field_default(self, base, monkeypatch):
assert base.config.prediction.__class__.model_fields["historic_hours"].default == 48
assert base.config.prediction.historic_hours == 48
monkeypatch.setenv("EOS_PREDICTION__HISTORIC_HOURS", "128")
base.config.reset_settings()
assert base.config.prediction.historic_hours == 128
monkeypatch.delenv("EOS_PREDICTION__HISTORIC_HOURS")
base.config.reset_settings()
assert base.config.prediction.historic_hours == 48
def test_get_config_value_key_error(self, base):
with pytest.raises(AttributeError):
base.config.prediction.non_existent_key
# TestPredictionRecord fully covered by TestDataRecord
# ----------------------------------------------------
# TestPredictionSequence fully covered by TestDataSequence
# --------------------------------------------------------
# TestPredictionStartEndKeepMixin fully covered by TestPredictionContainer
# --------------------------------------------------------
class TestPredictionProvider:
# Fixtures and helper functions
@pytest.fixture
def provider(self):
"""Fixture to provide an instance of TestPredictionProvider for testing."""
DerivedPredictionProvider.provider_enabled = True
DerivedPredictionProvider.provider_updated = False
return DerivedPredictionProvider()
@pytest.fixture
def sample_start_datetime(self):
"""Fixture for a sample start datetime."""
return to_datetime(datetime(2024, 11, 1, 12, 0))
def create_test_record(self, date, value):
"""Helper function to create a test PredictionRecord."""
return DerivedRecord(date_time=date, prediction_value=value)
# Tests
def test_singleton_behavior(self, provider):
"""Test that PredictionProvider enforces singleton behavior."""
instance1 = provider
instance2 = DerivedPredictionProvider()
assert instance1 is instance2, (
"Singleton pattern is not enforced; instances are not the same."
)
def test_update_computed_fields(self, provider, sample_start_datetime):
"""Test that computed fields `end_datetime` and `keep_datetime` are correctly calculated."""
ems_eos = get_ems()
ems_eos.set_start_datetime(sample_start_datetime)
provider.config.prediction.hours = 24 # 24 hours into the future
provider.config.prediction.historic_hours = 48 # 48 hours into the past
expected_end_datetime = sample_start_datetime + to_duration(
provider.config.prediction.hours * 3600
)
expected_keep_datetime = sample_start_datetime - to_duration(
provider.config.prediction.historic_hours * 3600
)
assert provider.end_datetime == expected_end_datetime, (
"End datetime is not calculated correctly."
)
assert provider.keep_datetime == expected_keep_datetime, (
"Keep datetime is not calculated correctly."
)
def test_update_method_with_defaults(
self, provider, sample_start_datetime, config_eos, monkeypatch
):
"""Test the `update` method with default parameters."""
# EOS config supersedes
ems_eos = get_ems()
# The following values are currently not set in EOS config, we can override
monkeypatch.setenv("EOS_PREDICTION__HISTORIC_HOURS", "2")
assert os.getenv("EOS_PREDICTION__HISTORIC_HOURS") == "2"
provider.config.reset_settings()
ems_eos.set_start_datetime(sample_start_datetime)
provider.update_data()
assert provider.config.prediction.hours == config_eos.prediction.hours
assert provider.config.prediction.historic_hours == 2
assert provider.ems_start_datetime == sample_start_datetime
assert provider.end_datetime == sample_start_datetime + to_duration(
f"{provider.config.prediction.hours} hours"
)
assert provider.keep_datetime == sample_start_datetime - to_duration("2 hours")
def test_update_method_force_enable(self, provider, monkeypatch):
"""Test that `update` executes when `force_enable` is True, even if `enabled` is False."""
# Preset values that are needed by update
monkeypatch.setenv("EOS_GENERAL__LATITUDE", "37.7749")
monkeypatch.setenv("EOS_GENERAL__LONGITUDE", "-122.4194")
# Override enabled to return False for this test
DerivedPredictionProvider.provider_enabled = False
DerivedPredictionProvider.provider_updated = False
provider.update_data(force_enable=True)
assert provider.enabled() is False, "Provider should be disabled, but enabled() is True."
assert DerivedPredictionProvider.provider_updated is True, (
"Provider should have been executed, but was not."
)
def test_delete_by_datetime(self, provider, sample_start_datetime):
"""Test `delete_by_datetime` method for removing records by datetime range."""
# Add records to the provider for deletion testing
provider.records = [
self.create_test_record(sample_start_datetime - to_duration("3 hours"), 1),
self.create_test_record(sample_start_datetime - to_duration("1 hour"), 2),
self.create_test_record(sample_start_datetime + to_duration("1 hour"), 3),
]
provider.delete_by_datetime(
start_datetime=sample_start_datetime - to_duration("2 hours"),
end_datetime=sample_start_datetime + to_duration("2 hours"),
)
assert len(provider.records) == 1, (
"Only one record should remain after deletion by datetime."
)
assert provider.records[0].date_time == sample_start_datetime - to_duration("3 hours"), (
"Unexpected record remains."
)
class TestPredictionContainer:
# Fixture and helpers
@pytest.fixture
def container(self):
container = DerivedPredictionContainer()
return container
@pytest.fixture
def container_with_providers(self):
record1 = self.create_test_record(datetime(2023, 11, 5), 1)
record2 = self.create_test_record(datetime(2023, 11, 6), 2)
record3 = self.create_test_record(datetime(2023, 11, 7), 3)
provider = DerivedPredictionProvider()
provider.clear()
assert len(provider) == 0
provider.append(record1)
provider.append(record2)
provider.append(record3)
assert len(provider) == 3
container = DerivedPredictionContainer()
container.providers.clear()
assert len(container.providers) == 0
container.providers.append(provider)
assert len(container.providers) == 1
return container
def create_test_record(self, date, value):
"""Helper function to create a test PredictionRecord."""
return DerivedRecord(date_time=date, prediction_value=value)
# Tests
@pytest.mark.parametrize(
"start, hours, end",
[
("2024-11-10 00:00:00", 24, "2024-11-11 00:00:00"), # No DST in Germany
("2024-08-10 00:00:00", 24, "2024-08-11 00:00:00"), # DST in Germany
("2024-03-31 00:00:00", 24, "2024-04-01 00:00:00"), # DST change (23 hours/ day)
("2024-10-27 00:00:00", 24, "2024-10-28 00:00:00"), # DST change (25 hours/ day)
("2024-11-10 00:00:00", 48, "2024-11-12 00:00:00"), # No DST in Germany
("2024-08-10 00:00:00", 48, "2024-08-12 00:00:00"), # DST in Germany
("2024-03-31 00:00:00", 48, "2024-04-02 00:00:00"), # DST change (47 hours/ day)
("2024-10-27 00:00:00", 48, "2024-10-29 00:00:00"), # DST change (49 hours/ day)
],
)
def test_end_datetime(self, container, start, hours, end):
"""Test end datetime calculation from start datetime."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"hours": hours,
}
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(end, in_timezone="Europe/Berlin")
assert compare_datetimes(container.end_datetime, expected).equal
@pytest.mark.parametrize(
"start, historic_hours, expected_keep",
[
# Standard case
(
pendulum.datetime(2024, 8, 10, 0, 0, tz="Europe/Berlin"),
24,
pendulum.datetime(2024, 8, 9, 0, 0, tz="Europe/Berlin"),
),
# With DST, but should not affect historical data
(
pendulum.datetime(2024, 4, 1, 0, 0, tz="Europe/Berlin"),
24,
pendulum.datetime(2024, 3, 30, 23, 0, tz="Europe/Berlin"),
),
],
)
def test_keep_datetime(self, container, start, historic_hours, expected_keep):
"""Test the `keep_datetime` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"historic_hours": historic_hours,
}
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(expected_keep, in_timezone="Europe/Berlin")
assert compare_datetimes(container.keep_datetime, expected).equal
@pytest.mark.parametrize(
"start, hours, expected_hours",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-03-31 00:00:00", 24, 23), # DST change in Germany (23 hours/ day)
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
],
)
def test_total_hours(self, container, start, hours, expected_hours):
"""Test the `total_hours` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"hours": hours,
}
}
container.config.merge_settings_from_dict(settings)
assert container.total_hours == expected_hours
@pytest.mark.parametrize(
"start, historic_hours, expected_hours",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
("2024-04-01 00:00:00", 24, 24), # DST change on 2024-03-31 in Germany (23 hours/ day)
("2024-10-28 00:00:00", 24, 24), # DST change on 2024-10-27 in Germany (25 hours/ day)
],
)
def test_keep_hours(self, container, start, historic_hours, expected_hours):
"""Test the `keep_hours` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"historic_hours": historic_hours,
}
}
container.config.merge_settings_from_dict(settings)
assert container.keep_hours == expected_hours
def test_append_provider(self, container):
assert len(container.providers) == 0
container.providers.append(DerivedPredictionProvider())
assert len(container.providers) == 1
assert isinstance(container.providers[0], DerivedPredictionProvider)
@pytest.mark.skip(reason="type check not implemented")
def test_append_provider_invalid_type(self, container):
with pytest.raises(ValueError, match="must be an instance of PredictionProvider"):
container.providers.append("not_a_provider")
def test_getitem_existing_key(self, container_with_providers):
assert len(container_with_providers.providers) == 1
# check all keys are available (don't care for position)
for key in ["prediction_value", "date_time"]:
assert key in list(container_with_providers.keys())
series = container_with_providers["prediction_value"]
assert isinstance(series, pd.Series)
assert series.name == "prediction_value"
assert series.tolist() == [1.0, 2.0, 3.0]
def test_getitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="No data found for key 'non_existent_key'"):
container_with_providers["non_existent_key"]
def test_setitem_existing_key(self, container_with_providers):
new_series = container_with_providers["prediction_value"]
new_series[:] = [4, 5, 6]
container_with_providers["prediction_value"] = new_series
series = container_with_providers["prediction_value"]
assert series.name == "prediction_value"
assert series.tolist() == [4, 5, 6]
def test_setitem_invalid_value(self, container_with_providers):
with pytest.raises(ValueError, match="Value must be an instance of pd.Series"):
container_with_providers["test_key"] = "not_a_series"
def test_setitem_non_existing_key(self, container_with_providers):
new_series = pd.Series([4, 5, 6], name="non_existent_key")
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
container_with_providers["non_existent_key"] = new_series
def test_delitem_existing_key(self, container_with_providers):
del container_with_providers["prediction_value"]
series = container_with_providers["prediction_value"]
assert series.name == "prediction_value"
assert series.tolist() == []
def test_delitem_non_existing_key(self, container_with_providers):
with pytest.raises(KeyError, match="Key 'non_existent_key' not found"):
del container_with_providers["non_existent_key"]
def test_len(self, container_with_providers):
assert len(container_with_providers) == 2
def test_repr(self, container_with_providers):
representation = repr(container_with_providers)
assert representation.startswith("DerivedPredictionContainer(")
assert "DerivedPredictionProvider" in representation
def test_to_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container_other = DerivedPredictionContainer.from_json(json_str)
assert container_other == container_with_providers
def test_from_json(self, container_with_providers):
json_str = container_with_providers.to_json()
container = DerivedPredictionContainer.from_json(json_str)
assert isinstance(container, DerivedPredictionContainer)
assert len(container.providers) == 1
assert container.providers[0] == container_with_providers.providers[0]
def test_provider_by_id(self, container_with_providers):
provider = container_with_providers.provider_by_id("DerivedPredictionProvider")
assert isinstance(provider, DerivedPredictionProvider)