Files
EOS/tests/test_pydantic.py
Bobby Noelte b397b5d43e fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.

This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.

The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.

This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.

* fix: automatic optimization

  Allow optimization to automatically run on configured intervals gathering all
  optimization parameters from configuration and predictions. The automatic run
  can be configured to only run prediction updates skipping the optimization.
  Extend documentaion to also cover automatic optimization. Lock automatic runs
  against runs initiated by the /optimize or other endpoints. Provide new
  endpoints to retrieve the energy management plan and the genetic solution
  of the latest automatic optimization run. Offload energy management to thread
  pool executor to keep the app more responsive during the CPU heavy optimization
  run.

* fix: EOS servers recognize environment variables on startup

  Force initialisation of EOS configuration on server startup to assure
  all sources of EOS configuration are properly set up and read. Adapt
  server tests and configuration tests to also test for environment
  variable configuration.

* fix: Remove 0.0.0.0 to localhost translation under Windows

  EOS imposed a 0.0.0.0 to localhost translation under Windows for
  convenience. This caused some trouble in user configurations. Now, as the
  default IP address configuration is 127.0.0.1, the user is responsible
  for to set up the correct Windows compliant IP address.

* fix: allow names for hosts additional to IP addresses

* fix: access pydantic model fields by class

  Access by instance is deprecated.

* fix: down sampling key_to_array

* fix: make cache clear endpoint clear all cache files

  Make /v1/admin/cache/clear clear all cache files. Before it only cleared
  expired cache files by default. Add new endpoint /v1/admin/clear-expired
  to only clear expired cache files.

* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin

  timezonefinder 8.10 got more inaccurate for timezones in europe as there is
  a common timezone. Use new package tzfpy instead which is still returning
  Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
  timezonefinder.

* fix: provider settings configuration

  Provider configuration used to be a union holding the settings for several
  providers. Pydantic union handling does not always find the correct type
  for a provider setting. This led to exceptions in specific configurations.
  Now provider settings are explicit comfiguration items for each possible
  provider. This is a breaking change as the configuration structure was
  changed.

* fix: ClearOutside weather prediction irradiance calculation

  Pvlib needs a pandas time index. Convert time index.

* fix: test config file priority

  Do not use config_eos fixture as this fixture already creates a config file.

* fix: optimization sample request documentation

  Provide all data in documentation of optimization sample request.

* fix: gitlint blocking pip dependency resolution

  Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
  Gitlint dependencies blocked pip from dependency resolution.

* fix: sync pre-commit config to actual dependency requirements

  .pre-commit-config.yaml was out of sync, also requirements-dev.txt.

* fix: missing babel in requirements.txt

  Add babel to requirements.txt

* feat: setup default device configuration for automatic optimization

  In case the parameters for automatic optimization are not fully defined a
  default configuration is setup to allow the automatic energy management
  run. The default configuration may help the user to correctly define
  the device configuration.

* feat: allow configuration of genetic algorithm parameters

  The genetic algorithm parameters for number of individuals, number of
  generations, the seed and penalty function parameters are now avaliable
  as configuration options.

* feat: allow configuration of home appliance time windows

  The time windows a home appliance is allowed to run are now configurable
  by the configuration (for /v1 API) and also by the home appliance parameters
  (for the classic /optimize API). If there is no such configuration the
  time window defaults to optimization hours, which was the standard before
  the change. Documentation on how to configure time windows is added.

* feat: standardize mesaurement keys for battery/ ev SoC measurements

  The standardized measurement keys to report battery SoC to the device
  simulations can now be retrieved from the device configuration as a
  read-only config option.

* feat: feed in tariff prediction

  Add feed in tarif predictions needed for automatic optimization. The feed in
  tariff can be retrieved as fixed feed in tarif or can be imported. Also add
  tests for the different feed in tariff providers. Extend documentation to
  cover the feed in tariff providers.

* feat: add energy management plan based on S2 standard instructions

  EOS can generate an energy management plan as a list of simple instructions.
  May be retrieved by the /v1/energy-management/plan endpoint. The instructions
  loosely follow the S2 energy management standard.

* feat: make measurement keys configurable by EOS configuration.

  The fixed measurement keys are replaced by configurable measurement keys.

* feat: make pendulum DateTime, Date, Duration types usable for pydantic models

  Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
  added to the datetimeutil utility. Remove custom made pendulum adaptations
  from EOS pydantic module. Make EOS modules use the pydantic pendulum types
  managed by the datetimeutil module instead of the core pendulum types.

* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.

  The time windows are are added to support home appliance time window
  configuration. All time classes are also pydantic models. Time is the base
  class for time definition derived from pendulum.Time.

* feat: Extend DataRecord by configurable field like data.

  Configurable field like data was added to support the configuration of
  measurement records.

* feat: Add additional information to health information

  Version information is added to the health endpoints of eos and eosDash.
  The start time of the last optimization and the latest run time of the energy
  management is added to the EOS health information.

* feat: add pydantic merge model tests

* feat: add plan tab to EOSdash

  The plan tab displays the current energy management instructions.

* feat: add predictions tab to EOSdash

  The predictions tab displays the current predictions.

* feat: add cache management to EOSdash admin tab

  The admin tab is extended by a section for cache management. It allows to
  clear the cache.

* feat: add about tab to EOSdash

  The about tab resembles the former hello tab and provides extra information.

* feat: Adapt changelog and prepare for release management

  Release management using commitizen is added. The changelog file is adapted and
  teh changelog and a description for release management is added in the
  documentation.

* feat(doc): Improve install and devlopment documentation

  Provide a more concise installation description in Readme.md and add extra
  installation page and development page to documentation.

* chore: Use memory cache for interpolation instead of dict in inverter

  Decorate calculate_self_consumption() with @cachemethod_until_update to cache
  results in memory during an energy management/ optimization run. Replacement
  of dict type caching in inverter is now possible because all optimization
  runs are properly locked and the memory cache CacheUntilUpdateStore is properly
  cleared at the start of any energy management/ optimization operation.

* chore: refactor genetic

  Refactor the genetic algorithm modules for enhanced module structure and better
  readability. Removed unnecessary and overcomplex devices singleton. Also
  split devices configuration from genetic algorithm parameters to allow further
  development independently from genetic algorithm parameter format. Move
  charge rates configuration for electric vehicles from optimization to devices
  configuration to allow to have different charge rates for different cars in
  the future.

* chore: Rename memory cache to CacheEnergyManagementStore

  The name better resembles the task of the cache to chache function and method
  results for an energy management run. Also the decorator functions are renamed
  accordingly: cachemethod_energy_management, cache_energy_management

* chore: use class properties for config/ems/prediction mixin classes

* chore: skip debug logs from mathplotlib

  Mathplotlib is very noisy in debug mode.

* chore: automatically sync bokeh js to bokeh python package

  bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.

* chore: rename hello.py to about.py

  Make hello.py the adapted EOSdash about page.

* chore: remove demo page from EOSdash

  As no the plan and prediction pages are working without configuration, the demo
  page is no longer necessary

* chore: split test_server.py for system test

  Split test_server.py to create explicit test_system.py for system tests.

* chore: move doc utils to generate_config_md.py

  The doc utils are only used in scripts/generate_config_md.py. Move it there to
  attribute for strong cohesion.

* chore: improve pydantic merge model documentation

* chore: remove pendulum warning from readme

* chore: remove GitHub discussions from contributing documentation

  Github discussions is to be replaced by Akkudoktor.net.

* chore(release): bump version to 0.1.0+dev for development

* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1

  bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.

* build(deps): bump uvicorn from 0.36.0 to 0.37.0

BREAKING CHANGE: EOS configuration changed. V1 API changed.

  - The available_charge_rates_percent configuration is removed from optimization.
    Use the new charge_rate configuration for the electric vehicle
  - Optimization configuration parameter hours renamed to horizon_hours
  - Device configuration now has to provide the number of devices and device
    properties per device.
  - Specific prediction provider configuration to be provided by explicit
    configuration item (no union for all providers).
  - Measurement keys to be provided as a list.
  - New feed in tariff providers have to be configured.
  - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
  - /v1/admin/cache/clear now clears all cache files. Use
    /v1/admin/cache/clear-expired to only clear all expired cache files.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00

523 lines
21 KiB
Python

from typing import Any, Optional
import pandas as pd
import pendulum
import pytest
from pydantic import Field, ValidationError
from akkudoktoreos.core.pydantic import (
PydanticBaseModel,
PydanticDateTimeData,
PydanticDateTimeDataFrame,
PydanticDateTimeSeries,
PydanticModelNestedValueMixin,
merge_models,
)
from akkudoktoreos.utils.datetimeutil import DateTime, compare_datetimes, to_datetime
class PydanticTestModel(PydanticBaseModel):
datetime_field: DateTime = Field(
..., description="A datetime field with pendulum support."
)
optional_field: Optional[str] = Field(default=None, description="An optional field.")
class Address(PydanticBaseModel):
city: Optional[str] = None
postal_code: Optional[str] = None
class User(PydanticBaseModel):
name: str
addresses: Optional[list[Address]] = None
settings: Optional[dict[str, str]] = None
class SampleNestedModel(PydanticBaseModel):
threshold: int
enabled: bool = True
class SampleModel(PydanticBaseModel):
name: str
count: int
config: SampleNestedModel
optional: str | None = None
class TestMergeModels:
"""Test suite for the merge_models utility function with None overriding."""
def test_flat_override(self):
"""Top-level fields in update_dict override those in source, including None."""
source = SampleModel(name="Test", count=10, config={"threshold": 5})
update = {"name": "Updated"}
result = merge_models(source, update)
assert result["name"] == "Updated"
assert result["count"] == 10
assert result["config"]["threshold"] == 5
def test_flat_override_with_none(self):
"""Update with None value should override source value."""
source = SampleModel(name="Test", count=10, config={"threshold": 5}, optional="keep me")
update = {"optional": None}
result = merge_models(source, update)
assert result["optional"] is None
def test_nested_override(self):
"""Nested fields in update_dict override nested fields in source, including None."""
source = SampleModel(name="Test", count=10, config={"threshold": 5, "enabled": True})
update = {"config": {"threshold": 99, "enabled": False}}
result = merge_models(source, update)
assert result["config"]["threshold"] == 99
assert result["config"]["enabled"] is False
def test_nested_override_with_none(self):
"""Nested update with None should override nested source values."""
source = SampleModel(name="Test", count=10, config={"threshold": 5, "enabled": True})
update = {"config": {"threshold": None}}
result = merge_models(source, update)
assert result["config"]["threshold"] is None
assert result["config"]["enabled"] is True # untouched because not in update
def test_preserve_source_values(self):
"""Source values are preserved if not overridden in update_dict."""
source = SampleModel(name="Source", count=7, config={"threshold": 1})
update: dict[str, Any] = {}
result = merge_models(source, update)
assert result["name"] == "Source"
assert result["count"] == 7
assert result["config"]["threshold"] == 1
def test_update_extends_source(self):
"""Optional fields in update_dict are added to result."""
source = SampleModel(name="Test", count=10, config={"threshold": 5})
update = {"optional": "new value"}
result = merge_models(source, update)
assert result["optional"] == "new value"
def test_update_extends_source_with_none(self):
"""Optional field with None in update_dict is added and overrides source."""
source = SampleModel(name="Test", count=10, config={"threshold": 5}, optional="value")
update = {"optional": None}
result = merge_models(source, update)
assert result["optional"] is None
def test_deep_merge_behavior(self):
"""Nested updates merge with source, overriding only specified subkeys."""
source = SampleModel(name="Model", count=3, config={"threshold": 1, "enabled": False})
update = {"config": {"enabled": True}}
result = merge_models(source, update)
assert result["config"]["enabled"] is True
assert result["config"]["threshold"] == 1
def test_override_all(self):
"""All fields in update_dict override all fields in source, including None."""
source = SampleModel(name="Orig", count=1, config={"threshold": 10, "enabled": True})
update = {
"name": "New",
"count": None,
"config": {"threshold": 50, "enabled": None}
}
result = merge_models(source, update)
assert result["name"] == "New"
assert result["count"] is None
assert result["config"]["threshold"] == 50
assert result["config"]["enabled"] is None
class TestPydanticModelNestedValueMixin:
"""Umbrella test class to group all test cases for `PydanticModelNestedValueMixin`."""
@pytest.fixture
def user_instance(self):
"""Fixture to initialize a sample User instance."""
return User(name="Alice", addresses=None, settings=None)
def test_get_key_types_for_simple_field(self):
"""Test _get_key_types for a simple string field."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "name")
assert key_types == [str], f"Expected [str], got {key_types}"
def test_get_key_types_for_list_of_models(self):
"""Test _get_key_types for a list of Address models."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "addresses")
assert key_types == [list, Address], f"Expected [list, Address], got {key_types}"
def test_get_key_types_for_dict_field(self):
"""Test _get_key_types for a dictionary field."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "settings")
assert key_types == [dict, str], f"Expected [dict, str], got {key_types}"
def test_get_key_types_for_optional_field(self):
"""Test _get_key_types correctly handles Optional fields."""
key_types = PydanticModelNestedValueMixin._get_key_types(Address, "city")
assert key_types == [str], f"Expected [str], got {key_types}"
def test_get_key_types_for_non_existent_field(self):
"""Test _get_key_types raises an error for non-existent field."""
with pytest.raises(TypeError):
PydanticModelNestedValueMixin._get_key_types(User, "unknown_field")
def test_get_key_types_for_instance_raises(self, user_instance):
"""Test _get_key_types raises an error for an instance."""
with pytest.raises(TypeError):
PydanticModelNestedValueMixin._get_key_types(user_instance, "unknown_field")
def test_set_nested_value_in_model(self, user_instance):
"""Test setting nested value in a model field (Address -> city)."""
assert user_instance.addresses is None
user_instance.set_nested_value("addresses/0/city", "New York")
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "New York", "The city should be set to 'New York'"
def test_set_nested_value_in_dict(self, user_instance):
"""Test setting nested value in a dictionary field (settings -> theme)."""
assert user_instance.settings is None
user_instance.set_nested_value("settings/theme", "dark")
assert user_instance.settings is not None
assert user_instance.settings["theme"] == "dark", "The theme should be set to 'dark'"
def test_set_nested_value_in_list(self, user_instance):
"""Test setting nested value in a list of models (addresses -> 1 -> city)."""
user_instance.set_nested_value("addresses/1/city", "Los Angeles")
# Check if the city in the second address is set correctly
assert user_instance.addresses[1].city == "Los Angeles", (
"The city at index 1 should be set to 'Los Angeles'"
)
def test_set_nested_value_in_optional_field(self, user_instance):
"""Test setting value in an Optional field (addresses)."""
user_instance.set_nested_value("addresses/0", Address(city="Chicago"))
# Check if the first address is set correctly
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "Chicago", "The city should be set to 'Chicago'"
def test_set_nested_value_with_empty_list(self):
"""Test setting value in an empty list of models."""
user = User(name="Bob", addresses=[])
user.set_nested_value("addresses/0/city", "Seattle")
assert user.addresses is not None
assert user.addresses[0].city == "Seattle", (
"The first address should have the city 'Seattle'"
)
def test_set_nested_value_with_missing_key_in_dict(self, user_instance):
"""Test setting value in a dict when the key does not exist."""
user_instance.set_nested_value("settings/language", "English")
assert user_instance.settings["language"] == "English", (
"The language setting should be 'English'"
)
def test_set_nested_value_for_non_existent_field(self):
"""Test attempting to set value for a non-existent field."""
user = User(name="John")
with pytest.raises(TypeError):
user.set_nested_value("non_existent_field", "Some Value")
def test_set_nested_value_with_invalid_type(self, user_instance):
"""Test setting value with an invalid type."""
with pytest.raises(ValueError):
user_instance.set_nested_value(
"addresses/0/city", 1234
) # city should be a string, not an integer
def test_set_nested_value_with_model_initialization(self):
"""Test setting a value in a model that should initialize a missing model."""
user = User(name="James", addresses=None)
user.set_nested_value("addresses/0/city", "Boston")
assert user.addresses is not None
assert user.addresses[0].city == "Boston", "The city should be set to 'Boston'"
assert isinstance(user.addresses[0], Address), (
"The first address should be an instance of Address"
)
def test_track_nested_value_simple_callback(self, user_instance):
user_instance.set_nested_value("addresses/0/city", "NY")
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "NY"
callback_calls = []
def cb(model, path, old, new):
callback_calls.append((path, old, new))
user_instance.track_nested_value("addresses/0/city", cb)
user_instance.set_nested_value("addresses/0/city", "LA")
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "LA"
assert callback_calls == [("addresses/0/city", "NY", "LA")]
def test_track_nested_value_prefix_triggers(self, user_instance):
user_instance.set_nested_value("addresses/0", Address(city="Berlin", postal_code="10000"))
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "Berlin"
cb_prefix = []
cb_exact = []
def cb1(model, path, old, new):
cb_prefix.append((path, old, new))
def cb2(model, path, old, new):
cb_exact.append((path, old, new))
user_instance.track_nested_value("addresses/0", cb1)
user_instance.track_nested_value("addresses/0/city", cb2)
user_instance.set_nested_value("addresses/0/city", "Munich")
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "Munich"
# Both callbacks should be triggered
assert cb_prefix == [("addresses/0/city", "Berlin", "Munich")]
assert cb_exact == [("addresses/0/city", "Berlin", "Munich")]
def test_track_nested_value_multiple_callbacks_same_path(self, user_instance):
user_instance.set_nested_value("addresses/0/city", "Berlin")
calls1 = []
calls2 = []
user_instance.track_nested_value("addresses/0/city", lambda lib, path, o, n: calls1.append((path, o, n)))
user_instance.track_nested_value("addresses/0/city", lambda lib, path, o, n: calls2.append((path, o, n)))
user_instance.set_nested_value("addresses/0/city", "Stuttgart")
assert calls1 == [("addresses/0/city", "Berlin", "Stuttgart")]
assert calls2 == [("addresses/0/city", "Berlin", "Stuttgart")]
def test_track_nested_value_invalid_path_raises(self, user_instance):
with pytest.raises(ValueError) as excinfo:
user_instance.track_nested_value("unknown_field", lambda model, path, o, n: None)
assert "is invalid" in str(excinfo.value)
with pytest.raises(ValueError) as excinfo:
user_instance.track_nested_value("unknown_field/0/city", lambda model, path, o, n: None)
assert "is invalid" in str(excinfo.value)
def test_track_nested_value_list_and_dict_path(self):
class Book(PydanticBaseModel):
title: str
class Library(PydanticBaseModel):
books: list[Book]
meta: dict[str, str] = {}
lib = Library(books=[Book(title="A")], meta={"location": "center"})
assert lib.meta["location"] == "center"
calls = []
# For list, only root attribute structure is checked, not indices
lib.track_nested_value("books/0/title", lambda lib, path, o, n: calls.append((path, o, n)))
lib.set_nested_value("books/0/title", "B")
assert lib.books[0].title == "B"
assert calls == [("books/0/title", "A", "B")]
# For dict, only root attribute structure is checked
meta_calls = []
lib.track_nested_value("meta/location", lambda lib, path, o, n: meta_calls.append((path, o, n)))
assert lib.meta["location"] == "center"
lib.set_nested_value("meta/location", "north")
assert lib.meta["location"] == "north"
assert meta_calls == [("meta/location", "center", "north")]
class TestPydanticBaseModel:
def test_valid_pendulum_datetime(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
assert model.datetime_field == dt
def test_invalid_datetime_string(self):
with pytest.raises(ValueError):
PydanticTestModel(datetime_field="invalid_datetime")
def test_iso8601_serialization(self):
dt = pendulum.datetime(2024, 12, 21, 15, 0, 0)
model = PydanticTestModel(datetime_field=dt)
serialized = model.to_dict()
expected_dt = to_datetime(dt)
result_dt = to_datetime(serialized["datetime_field"])
assert compare_datetimes(result_dt, expected_dt)
def test_reset_to_defaults(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt, optional_field="some value")
model.reset_to_defaults()
assert model.datetime_field == dt
assert model.optional_field is None
def test_from_dict_and_to_dict(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
data = model.to_dict()
restored_model = PydanticTestModel.from_dict(data)
assert restored_model.datetime_field == dt
def test_to_json_and_from_json(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
json_data = model.to_json()
restored_model = PydanticTestModel.from_json(json_data)
assert restored_model.datetime_field == dt
class TestPydanticDateTimeData:
def test_valid_list_lengths(self):
data = {
"timestamps": ["2024-12-21T15:00:00+00:00"],
"values": [100],
}
model = PydanticDateTimeData(root=data)
assert pendulum.parse(model.root["timestamps"][0]) == pendulum.parse(
"2024-12-21T15:00:00+00:00"
)
def test_invalid_list_lengths(self):
data = {
"timestamps": ["2024-12-21T15:00:00+00:00"],
"values": [100, 200],
}
with pytest.raises(
ValidationError, match="All lists in the dictionary must have the same length"
):
PydanticDateTimeData(root=data)
class TestPydanticDateTimeDataFrame:
def test_valid_dataframe(self):
"""Ensure conversion from and to DataFrame preserves index and values."""
df = pd.DataFrame(
{
"value": [100, 200],
},
index=pd.to_datetime(["2024-12-21", "2024-12-22"]),
)
model = PydanticDateTimeDataFrame.from_dataframe(df)
result = model.to_dataframe()
assert len(result.index) == len(df.index)
for i, dt in enumerate(df.index):
expected_dt = to_datetime(dt)
result_dt = to_datetime(result.index[i])
assert compare_datetimes(result_dt, expected_dt).equal
def test_add_row(self):
"""Verify that a new row can be inserted with matching columns."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.add_row("2024-12-22T00:00:00", {"value": 200})
# Normalize key the same way the model stores it
key = model._normalize_index("2024-12-22T00:00:00")
assert key in model.data
assert model.data[key]["value"] == 200
def test_add_row_column_mismatch_raises(self):
"""Ensure adding a row with mismatched columns raises ValueError."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
with pytest.raises(ValueError):
model.add_row("2024-12-22T00:00:00", {"wrong": 200})
def test_update_row(self):
"""Check updating an existing row's values works."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.update_row("2024-12-21T00:00:00", {"value": 999})
key = model._normalize_index("2024-12-21T00:00:00")
assert model.data[key]["value"] == 999
def test_update_row_missing_raises(self):
"""Verify updating a non-existing row raises KeyError."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
with pytest.raises(KeyError):
model.update_row("2024-12-22T00:00:00", {"value": 999})
def test_delete_row(self):
"""Ensure rows can be deleted by index."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.delete_row("2024-12-21T00:00:00")
assert "2024-12-21T00:00:00" not in model.data
def test_set_and_get_value(self):
"""Confirm set_value and get_value operate correctly."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.set_value("2024-12-21T00:00:00", "value", 555)
assert model.get_value("2024-12-21T00:00:00", "value") == 555
def test_add_column(self):
"""Check that a new column can be added with default value."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.add_column("extra", default=0, dtype="int64")
key = model._normalize_index("2024-12-21T00:00:00")
assert model.data[key]["extra"] == 0
assert model.dtypes["extra"] == "int64"
def test_rename_column(self):
"""Ensure renaming a column updates all rows and dtypes."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100}}, dtypes={"value": "int64"}
)
model.rename_column("value", "renamed")
key = model._normalize_index("2024-12-21T00:00:00")
assert "renamed" in model.data[key]
assert "value" not in model.data[key]
assert model.dtypes["renamed"] == "int64"
def test_drop_column(self):
"""Verify dropping a column removes it from both data and dtypes."""
model = PydanticDateTimeDataFrame(
data={"2024-12-21T00:00:00": {"value": 100, "extra": 1}}, dtypes={"value": "int64", "extra": "int64"}
)
model.drop_column("extra")
key = model._normalize_index("2024-12-21T00:00:00")
assert "extra" not in model.data[key]
assert "extra" not in model.dtypes
class TestPydanticDateTimeSeries:
def test_valid_series(self):
series = pd.Series([100, 200], index=pd.to_datetime(["2024-12-21", "2024-12-22"]))
model = PydanticDateTimeSeries.from_series(series)
result = model.to_series()
# Check index
assert len(result.index) == len(series.index)
for i, dt in enumerate(series.index):
expected_dt = to_datetime(dt)
result_dt = to_datetime(result.index[i])
assert compare_datetimes(result_dt, expected_dt).equal