Files
EOS/src/akkudoktoreos/measurement/measurement.py
Bobby Noelte bd38b3c5ef
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
fix: logging, prediction update, multiple bugs (#584)
* Fix logging configuration issues that made logging stop operation. Switch to Loguru
  logging (from Python logging). Enable console and file logging with different log levels.
  Add logging documentation.

* Fix logging configuration and EOS configuration out of sync. Added tracking support
  for nested value updates of Pydantic models. This used to update the logging configuration
  when the EOS configurationm for logging is changed. Should keep logging config and EOS
  config in sync as long as all changes to the EOS logging configuration are done by
  set_nested_value(), which is the case for the REST API.

* Fix energy management task looping endlessly after the second update when trying to update
  the last_update datetime.

* Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance.

* Fix usage of model classes instead of model instances in nested value access when evaluation
  the value type that is associated to each key.

* Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider.

* Fix documentation qirks and add EOS Connect to integrations.

* Support deprecated fields in configuration in documentation generation and EOSdash.

* Enhance EOSdash demo to show BrightSky humidity data (that is often missing)

* Update documentation reference to German EOS installation videos.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-06-10 22:00:28 +02:00

274 lines
10 KiB
Python

"""Measurement module to provide and store measurements.
This module provides a `Measurement` class to manage and update a sequence of
data records for measurements.
The measurements can be added programmatically or imported from a file or JSON string.
"""
from typing import Any, ClassVar, List, Optional
import numpy as np
from loguru import logger
from numpydantic import NDArray, Shape
from pendulum import DateTime, Duration
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.dataabc import DataImportMixin, DataRecord, DataSequence
from akkudoktoreos.utils.datetimeutil import to_duration
class MeasurementCommonSettings(SettingsBaseModel):
"""Measurement Configuration."""
load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source", examples=["Household", "Heat Pump"]
)
load1_name: Optional[str] = Field(
default=None, description="Name of the load1 source", examples=[None]
)
load2_name: Optional[str] = Field(
default=None, description="Name of the load2 source", examples=[None]
)
load3_name: Optional[str] = Field(
default=None, description="Name of the load3 source", examples=[None]
)
load4_name: Optional[str] = Field(
default=None, description="Name of the load4 source", examples=[None]
)
class MeasurementDataRecord(DataRecord):
"""Represents a measurement data record containing various measurements at a specific datetime.
Attributes:
date_time (Optional[DateTime]): The datetime of the record.
"""
# Single loads, to be aggregated to total load
load0_mr: Optional[float] = Field(
default=None, ge=0, description="Load0 meter reading [kWh]", examples=[40421]
)
load1_mr: Optional[float] = Field(
default=None, ge=0, description="Load1 meter reading [kWh]", examples=[None]
)
load2_mr: Optional[float] = Field(
default=None, ge=0, description="Load2 meter reading [kWh]", examples=[None]
)
load3_mr: Optional[float] = Field(
default=None, ge=0, description="Load3 meter reading [kWh]", examples=[None]
)
load4_mr: Optional[float] = Field(
default=None, ge=0, description="Load4 meter reading [kWh]", examples=[None]
)
max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
grid_export_mr: Optional[float] = Field(
default=None, ge=0, description="Export to grid meter reading [kWh]", examples=[1000]
)
grid_import_mr: Optional[float] = Field(
default=None, ge=0, description="Import from grid meter reading [kWh]", examples=[1000]
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def loads(self) -> List[str]:
"""Compute a list of active loads."""
active_loads = []
# Loop through loadx
for i in range(self.max_loads):
load_attr = f"load{i}_mr"
# Check if either attribute is set and add to active loads
if getattr(self, load_attr, None):
active_loads.append(load_attr)
return active_loads
class Measurement(SingletonMixin, DataImportMixin, DataSequence):
"""Singleton class that holds measurement data records.
Measurements can be provided programmatically or read from JSON string or file.
"""
records: List[MeasurementDataRecord] = Field(
default_factory=list, description="List of measurement data records"
)
topics: ClassVar[List[str]] = [
"load",
]
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def _interval_count(
self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration
) -> int:
"""Calculate number of intervals between two datetimes.
Args:
start_datetime: Starting datetime
end_datetime: Ending datetime
interval: Time duration for each interval
Returns:
Number of intervals as integer
Raises:
ValueError: If end_datetime is before start_datetime
ValueError: If interval is zero or negative
"""
if end_datetime < start_datetime:
raise ValueError("end_datetime must be after start_datetime")
if interval.total_seconds() <= 0:
raise ValueError("interval must be positive")
# Calculate difference in seconds
diff_seconds = end_datetime.diff(start_datetime).total_seconds()
interval_seconds = interval.total_seconds()
# Return ceiling of division to include partial intervals
return int(np.ceil(diff_seconds / interval_seconds))
def name_to_key(self, name: str, topic: str) -> Optional[str]:
"""Provides measurement key for given name and topic."""
topic = topic.lower()
if topic not in self.topics:
return None
topic_keys = [
key for key in self.config.measurement.model_fields.keys() if key.startswith(topic)
]
key = None
if topic == "load":
for config_key in topic_keys:
if (
config_key.endswith("_name")
and getattr(self.config.measurement, config_key) == name
):
key = topic + config_key[len(topic) : len(topic) + 1] + "_mr"
break
if key is not None and key not in self.record_keys:
# Should never happen
error_msg = f"Key '{key}' not available."
logger.error(error_msg)
raise KeyError(error_msg)
return key
def _energy_from_meter_readings(
self,
key: str,
start_datetime: DateTime,
end_datetime: DateTime,
interval: Duration,
) -> NDArray[Shape["*"], Any]:
"""Calculate an energy values array indexed by fixed time intervals from energy metering data within an optional date range.
Args:
key: Key for energy meter readings.
start_datetime (datetime): The start date for filtering the energy data (inclusive).
end_datetime (datetime): The end date for filtering the energy data (exclusive).
interval (duration): The fixed time interval.
Returns:
np.ndarray: A NumPy Array of the energy [kWh] per interval values calculated from
the meter readings.
"""
# Add one interval to end_datetime to assure we have a energy value interval for all
# datetimes from start_datetime (inclusive) to end_datetime (exclusive)
end_datetime += interval
size = self._interval_count(start_datetime, end_datetime, interval)
energy_mr_array = self.key_to_array(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
)
if energy_mr_array.size != size:
logging_msg = (
f"'{key}' meter reading array size: {energy_mr_array.size}"
f" does not fit to expected size: {size}, {energy_mr_array}"
)
if energy_mr_array.size != 0:
logger.error(logging_msg)
raise ValueError(logging_msg)
logger.debug(logging_msg)
energy_array = np.zeros(size - 1)
elif np.any(energy_mr_array == None):
# 'key_to_array()' creates None values array if no data records are available.
# Array contains None value -> ignore
debug_msg = f"'{key}' meter reading None: {energy_mr_array}"
logger.debug(debug_msg)
energy_array = np.zeros(size - 1)
else:
# Calculate load per interval
debug_msg = f"'{key}' meter reading: {energy_mr_array}"
logger.debug(debug_msg)
energy_array = np.diff(energy_mr_array)
debug_msg = f"'{key}' energy calculation: {energy_array}"
logger.debug(debug_msg)
return energy_array
def load_total(
self,
start_datetime: Optional[DateTime] = None,
end_datetime: Optional[DateTime] = None,
interval: Optional[Duration] = None,
) -> NDArray[Shape["*"], Any]:
"""Calculate a total load energy values array indexed by fixed time intervals from load metering data within an optional date range.
Args:
start_datetime (datetime, optional): The start date for filtering the load data (inclusive).
end_datetime (datetime, optional): The end date for filtering the load data (exclusive).
interval (duration, optional): The fixed time interval. Defaults to 1 hour.
Returns:
np.ndarray: A NumPy Array of the total load energy [kWh] per interval values calculated from
the load meter readings.
"""
if len(self) < 1:
# No data available
if start_datetime is None or end_datetime is None:
size = 0
else:
size = self._interval_count(start_datetime, end_datetime, interval)
return np.zeros(size)
if interval is None:
interval = to_duration("1 hour")
if start_datetime is None:
start_datetime = self[0].date_time
if end_datetime is None:
end_datetime = self[-1].date_time
size = self._interval_count(start_datetime, end_datetime, interval)
load_total_array = np.zeros(size)
# Loop through load<x>_mr
for i in range(self.record_class().max_loads):
key = f"load{i}_mr"
# Calculate load per interval
load_array = self._energy_from_meter_readings(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval
)
# Add calculated load to total load
load_total_array += load_array
debug_msg = f"Total load '{key}' calculation: {load_total_array}"
logger.debug(debug_msg)
return load_total_array
def get_measurement() -> Measurement:
"""Gets the EOS measurement data."""
return Measurement()