EOS/src/akkudoktoreos/prediction/loadakkudoktor.py
Bobby Noelte e6a8c0508e
Fix negative values load mean adjusted (#491)
* Fix negativ values in load_mean_adjusted

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-03-27 21:57:26 +01:00

134 lines
6.0 KiB
Python

"""Retrieves load forecast data from Akkudoktor load profiles."""
from typing import Optional
import numpy as np
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
logger = get_logger(__name__)
class LoadAkkudoktorCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file."""
loadakkudoktor_year_energy: Optional[float] = Field(
default=None, description="Yearly energy consumption (kWh).", examples=[40421]
)
class LoadAkkudoktor(LoadProvider):
"""Fetch Load forecast data from Akkudoktor load profiles."""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the LoadAkkudoktor provider."""
return "LoadAkkudoktor"
def _calculate_adjustment(self, data_year_energy: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Calculate weekday and week end adjustment from total load measurement data.
Returns:
weekday_adjust (np.ndarray): hourly adjustment for Monday to Friday.
weekend_adjust (np.ndarray): hourly adjustment for Saturday and Sunday.
"""
weekday_adjust = np.zeros(24)
weekday_adjust_weight = np.zeros(24)
weekend_adjust = np.zeros(24)
weekend_adjust_weight = np.zeros(24)
if self.measurement.max_datetime is None:
# No measurements - return 0 adjustment
return (weekday_adjust, weekday_adjust)
# compare predictions with real measurement - try to use last 7 days
compare_start = self.measurement.max_datetime - to_duration("7 days")
if compare_datetimes(compare_start, self.measurement.min_datetime).lt:
# Not enough measurements for 7 days - use what is available
compare_start = self.measurement.min_datetime
compare_end = self.measurement.max_datetime
compare_interval = to_duration("1 hour")
load_total_array = self.measurement.load_total(
start_datetime=compare_start,
end_datetime=compare_end,
interval=compare_interval,
)
compare_dt = compare_start
for i in range(len(load_total_array)):
load_total = load_total_array[i]
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[compare_dt.day_of_year - 1, :, compare_dt.hour]
weight = 1 / ((compare_end - compare_dt).days + 1)
if compare_dt.day_of_week < 5:
weekday_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekday_adjust_weight[compare_dt.hour] += weight
else:
weekend_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekend_adjust_weight[compare_dt.hour] += weight
compare_dt += compare_interval
# Calculate mean
for i in range(24):
if weekday_adjust_weight[i] > 0:
weekday_adjust[i] = weekday_adjust[i] / weekday_adjust_weight[i]
if weekend_adjust_weight[i] > 0:
weekend_adjust[i] = weekend_adjust[i] / weekend_adjust_weight[i]
return (weekday_adjust, weekend_adjust)
def load_data(self) -> np.ndarray:
"""Loads data from the Akkudoktor load file."""
load_file = self.config.package_root_path.joinpath("data/load_profiles.npz")
data_year_energy = None
try:
file_data = np.load(load_file)
profile_data = np.array(
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
)
# Calculate values in W by relative profile data and yearly consumption given in kWh
data_year_energy = (
profile_data * self.config.load.provider_settings.loadakkudoktor_year_energy * 1000
)
except FileNotFoundError:
error_msg = f"Error: File {load_file} not found."
logger.error(error_msg)
raise FileNotFoundError(error_msg)
except Exception as e:
error_msg = f"An error occurred while loading data: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
return data_year_energy
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Adds the load means and standard deviations."""
data_year_energy = self.load_data()
weekday_adjust, weekend_adjust = self._calculate_adjustment(data_year_energy)
# We provide prediction starting at start of day, to be compatible to old system.
# End date for prediction is prediction hours from now.
date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
while compare_datetimes(date, end_date).lt:
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[date.day_of_year - 1, :, date.hour]
values = {
"load_mean": hourly_stats[0],
"load_std": hourly_stats[1],
}
if date.day_of_week < 5:
# Monday to Friday (0..4)
value_adjusted = hourly_stats[0] + weekday_adjust[date.hour]
else:
# Saturday, Sunday (5, 6)
value_adjusted = hourly_stats[0] + weekend_adjust[date.hour]
values["load_mean_adjusted"] = max(0, value_adjusted)
self.update_value(date, values)
date += to_duration("1 hour")
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)