EOS/modules/class_load_container.py
2024-10-03 17:28:49 +02:00

42 lines
1.4 KiB
Python

import numpy as np
class Gesamtlast:
def __init__(self, prediction_hours=24):
self.lasten = {} # Contains names and load arrays for different sources
self.prediction_hours = prediction_hours
def hinzufuegen(self, name, last_array):
"""
Adds an array of loads for a specific source.
:param name: Name of the load source (e.g., "Household", "Heat Pump")
:param last_array: Array of loads, where each entry corresponds to an hour
"""
if len(last_array) != self.prediction_hours:
raise ValueError(
f"Total load inconsistent lengths in arrays: {name} {len(last_array)}"
)
self.lasten[name] = last_array
def gesamtlast_berechnen(self):
"""
Calculates the total load for each hour and returns an array of total loads.
:return: Array of total loads, where each entry corresponds to an hour
"""
if not self.lasten:
return []
# Assumption: All load arrays have the same length
stunden = len(next(iter(self.lasten.values())))
gesamtlast_array = [0] * stunden
for last_array in self.lasten.values():
gesamtlast_array = [
gesamtlast + stundenlast
for gesamtlast, stundenlast in zip(gesamtlast_array, last_array)
]
return np.array(gesamtlast_array)