EOS/tests/test_class_optimize.py
Dominique Lasserre afa5cc7c02 input data: Fix indentation
* Comment full_run (use pytest --full-run to activate)
2024-12-22 10:36:36 +01:00

99 lines
3.3 KiB
Python

import json
from pathlib import Path
from typing import Any
from unittest.mock import patch
import pytest
from akkudoktoreos.config import AppConfig
from akkudoktoreos.optimization.genetic import (
OptimizationParameters,
OptimizeResponse,
optimization_problem,
)
DIR_TESTDATA = Path(__file__).parent / "testdata"
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
assert set(actual) == set(expected)
for key, value in expected.items():
if isinstance(value, dict):
assert isinstance(actual[key], dict)
compare_dict(actual[key], value)
elif isinstance(value, list):
assert isinstance(actual[key], list)
assert actual[key] == pytest.approx(value)
else:
assert actual[key] == pytest.approx(value)
@pytest.mark.parametrize(
"fn_in, fn_out, ngen",
[
("optimize_input_1.json", "optimize_result_1.json", 3),
("optimize_input_2.json", "optimize_result_2.json", 3),
("optimize_input_2.json", "optimize_result_2_full.json", 400),
],
)
def test_optimize(
fn_in: str,
fn_out: str,
ngen: int,
is_full_run: bool,
tmp_config: AppConfig,
):
"""Test optimierung_ems."""
# Load input and output data
file = DIR_TESTDATA / fn_in
with file.open("r") as f_in:
input_data = OptimizationParameters(**json.load(f_in))
file = DIR_TESTDATA / fn_out
# In case a new test case is added, we don't want to fail here, so the new output is written to disk before
try:
with file.open("r") as f_out:
expected_result = OptimizeResponse(**json.load(f_out))
except FileNotFoundError:
pass
opt_class = optimization_problem(tmp_config, fixed_seed=42)
start_hour = 10
# Activate with pytest --full-run
if ngen > 10 and not is_full_run:
pytest.skip()
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
def visualize_to_file(*args, **kwargs):
from akkudoktoreos.visualize import visualisiere_ergebnisse
# Write test output pdf to file, so we can look at it manually
kwargs["filename"] = visualize_filename
return visualisiere_ergebnisse(*args, **kwargs)
with patch(
"akkudoktoreos.optimization.genetic.visualisiere_ergebnisse", side_effect=visualize_to_file
) as visualisiere_ergebnisse_patch:
# Call the optimization function
ergebnis = opt_class.optimierung_ems(
parameters=input_data, start_hour=start_hour, ngen=ngen
)
# Write test output to file, so we can take it as new data on intended change
with open(DIR_TESTDATA / f"new_{fn_out}", "w") as f_out:
f_out.write(ergebnis.model_dump_json(indent=4, exclude_unset=True))
assert ergebnis.result.Gesamtbilanz_Euro == pytest.approx(
expected_result.result.Gesamtbilanz_Euro
)
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()