mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-02 15:56:21 +00:00
Automatic optimization used to take the adjusted load data even if there were no measurements leading to 0 load values. Split LoadAkkudoktor into LoadAkkudoktor and LoadAkkudoktorAdjusted. This allows to select load data either purely from the load data database or load data additionally adjusted by load measurements. Some value names have been adapted to denote also the unit of a value. For better load bug squashing the optimization solution data availability was improved. For better data visbility prediction data can now be distinguished from solution data in the generic optimization solution. Some predictions that may be of interest to understand the solution were added. Documentation was updated to resemble the addition load prediction provider and the value name changes. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
524 lines
15 KiB
Python
Executable File
524 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import asyncio
|
|
import cProfile
|
|
import json
|
|
import pstats
|
|
import sys
|
|
import time
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
from loguru import logger
|
|
|
|
from akkudoktoreos.config.config import get_config
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.core.emsettings import EnergyManagementMode
|
|
from akkudoktoreos.optimization.genetic import (
|
|
GeneticOptimizationParameters,
|
|
)
|
|
from akkudoktoreos.prediction.prediction import get_prediction
|
|
from akkudoktoreos.utils.datetimeutil import to_datetime
|
|
|
|
config_eos = get_config()
|
|
prediction_eos = get_prediction()
|
|
ems_eos = get_ems()
|
|
|
|
|
|
def prepare_optimization_real_parameters() -> GeneticOptimizationParameters:
|
|
"""Prepare and return optimization parameters with real world data.
|
|
|
|
Returns:
|
|
GeneticOptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# Make a config
|
|
settings = {
|
|
"general": {
|
|
"latitude": 52.52,
|
|
"longitude": 13.405,
|
|
},
|
|
"prediction": {
|
|
"hours": 48,
|
|
"historic_hours": 24,
|
|
},
|
|
"optimization": {
|
|
"horizon_hours": 24,
|
|
"interval": 3600,
|
|
"genetic": {
|
|
"individuals": 300,
|
|
"generations": 400,
|
|
"seed": None,
|
|
"penalties": {
|
|
"ev_soc_miss": 10,
|
|
},
|
|
},
|
|
},
|
|
# PV Forecast
|
|
"pvforecast": {
|
|
"provider": "PVForecastAkkudoktor",
|
|
"planes": [
|
|
{
|
|
"peakpower": 5.0,
|
|
"surface_azimuth": -10,
|
|
"surface_tilt": 7,
|
|
"userhorizon": [20, 27, 22, 20],
|
|
"inverter_paco": 10000,
|
|
},
|
|
{
|
|
"peakpower": 4.8,
|
|
"surface_azimuth": -90,
|
|
"surface_tilt": 7,
|
|
"userhorizon": [30, 30, 30, 50],
|
|
"inverter_paco": 10000,
|
|
},
|
|
{
|
|
"peakpower": 1.4,
|
|
"surface_azimuth": -40,
|
|
"surface_tilt": 60,
|
|
"userhorizon": [60, 30, 0, 30],
|
|
"inverter_paco": 2000,
|
|
},
|
|
{
|
|
"peakpower": 1.6,
|
|
"surface_azimuth": 5,
|
|
"surface_tilt": 45,
|
|
"userhorizon": [45, 25, 30, 60],
|
|
"inverter_paco": 1400,
|
|
},
|
|
],
|
|
},
|
|
# Weather Forecast
|
|
"weather": {
|
|
"provider": "ClearOutside",
|
|
},
|
|
# Electricity Price Forecast
|
|
"elecprice": {
|
|
"provider": "ElecPriceAkkudoktor",
|
|
},
|
|
# Load Forecast
|
|
"load": {
|
|
"provider": "LoadAkkudoktor",
|
|
"provider_settings": {
|
|
"LoadAkkudoktor": {
|
|
"loadakkudoktor_year_energy_kwh": 5000, # Energy consumption per year in kWh
|
|
},
|
|
},
|
|
},
|
|
# -- Simulations --
|
|
# Assure we have charge rates for the EV
|
|
"devices": {
|
|
"max_electric_vehicles": 1,
|
|
"electric_vehicles": [
|
|
{
|
|
"charge_rates": [
|
|
0.0,
|
|
6.0 / 16.0,
|
|
8.0 / 16.0,
|
|
10.0 / 16.0,
|
|
12.0 / 16.0,
|
|
14.0 / 16.0,
|
|
1.0,
|
|
],
|
|
},
|
|
],
|
|
},
|
|
}
|
|
|
|
# Update/ set configuration
|
|
config_eos.merge_settings_from_dict(settings)
|
|
|
|
# Get current prediction data for optimization run
|
|
ems_eos.set_start_datetime()
|
|
print(
|
|
f"Real data prediction from {prediction_eos.ems_start_datetime} to {prediction_eos.end_datetime}"
|
|
)
|
|
prediction_eos.update_data()
|
|
|
|
# PV Forecast (in W)
|
|
pv_forecast = prediction_eos.key_to_array(
|
|
key="pvforecast_ac_power",
|
|
start_datetime=prediction_eos.ems_start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"pv_forecast: {pv_forecast}")
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = prediction_eos.key_to_array(
|
|
key="weather_temp_air",
|
|
start_datetime=prediction_eos.ems_start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"temperature_forecast: {temperature_forecast}")
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = prediction_eos.key_to_array(
|
|
key="elecprice_marketprice_wh",
|
|
start_datetime=prediction_eos.ems_start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"strompreis_euro_pro_wh: {strompreis_euro_pro_wh}")
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = prediction_eos.key_to_array(
|
|
key="load_mean",
|
|
start_datetime=prediction_eos.ems_start_datetime,
|
|
end_datetime=prediction_eos.end_datetime,
|
|
)
|
|
print(f"gesamtlast: {gesamtlast}")
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
print(f"start_solution: {start_solution}")
|
|
|
|
# Define parameters for the optimization problem
|
|
return GeneticOptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"device_id": "battery 1",
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"inverter": {
|
|
"device_id": "inverter 1",
|
|
"max_power_wh": 10000,
|
|
"battery_id": "battery 1",
|
|
},
|
|
"eauto": {
|
|
"device_id": "electric vehicle 1",
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def prepare_optimization_parameters() -> GeneticOptimizationParameters:
|
|
"""Prepare and return optimization parameters with predefined data.
|
|
|
|
Returns:
|
|
GeneticOptimizationParameters: Configured optimization parameters
|
|
"""
|
|
# Initialize the optimization problem using the default configuration
|
|
config_eos.merge_settings_from_dict(
|
|
{
|
|
"prediction": {"hours": 48},
|
|
"optimization": {
|
|
"horizon_hours": 48,
|
|
"interval": 3600,
|
|
"genetic": {
|
|
"individuals": 300,
|
|
"generations": 400,
|
|
"seed": None,
|
|
"penalties": {
|
|
"ev_soc_miss": 10,
|
|
},
|
|
},
|
|
},
|
|
# Assure we have charge rates for the EV
|
|
"devices": {
|
|
"max_electric_vehicles": 1,
|
|
"electric_vehicles": [
|
|
{
|
|
"device_id": "Default EV",
|
|
"charge_rates": [
|
|
0.0,
|
|
6.0 / 16.0,
|
|
8.0 / 16.0,
|
|
10.0 / 16.0,
|
|
12.0 / 16.0,
|
|
14.0 / 16.0,
|
|
1.0,
|
|
],
|
|
},
|
|
],
|
|
},
|
|
}
|
|
)
|
|
|
|
# PV Forecast (in W)
|
|
pv_forecast = np.zeros(48)
|
|
pv_forecast[12] = 5000
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = [
|
|
18.3,
|
|
17.8,
|
|
16.9,
|
|
16.2,
|
|
15.6,
|
|
15.1,
|
|
14.6,
|
|
14.2,
|
|
14.3,
|
|
14.8,
|
|
15.7,
|
|
16.7,
|
|
17.4,
|
|
18.0,
|
|
18.6,
|
|
19.2,
|
|
19.1,
|
|
18.7,
|
|
18.5,
|
|
17.7,
|
|
16.2,
|
|
14.6,
|
|
13.6,
|
|
13.0,
|
|
12.6,
|
|
12.2,
|
|
11.7,
|
|
11.6,
|
|
11.3,
|
|
11.0,
|
|
10.7,
|
|
10.2,
|
|
11.4,
|
|
14.4,
|
|
16.4,
|
|
18.3,
|
|
19.5,
|
|
20.7,
|
|
21.9,
|
|
22.7,
|
|
23.1,
|
|
23.1,
|
|
22.8,
|
|
21.8,
|
|
20.2,
|
|
19.1,
|
|
18.0,
|
|
17.4,
|
|
]
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = np.full(48, 0.001)
|
|
strompreis_euro_pro_wh[0:10] = 0.00001
|
|
strompreis_euro_pro_wh[11:15] = 0.00005
|
|
strompreis_euro_pro_wh[20] = 0.00001
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = [
|
|
676.71,
|
|
876.19,
|
|
527.13,
|
|
468.88,
|
|
531.38,
|
|
517.95,
|
|
483.15,
|
|
472.28,
|
|
1011.68,
|
|
995.00,
|
|
1053.07,
|
|
1063.91,
|
|
1320.56,
|
|
1132.03,
|
|
1163.67,
|
|
1176.82,
|
|
1216.22,
|
|
1103.78,
|
|
1129.12,
|
|
1178.71,
|
|
1050.98,
|
|
988.56,
|
|
912.38,
|
|
704.61,
|
|
516.37,
|
|
868.05,
|
|
694.34,
|
|
608.79,
|
|
556.31,
|
|
488.89,
|
|
506.91,
|
|
804.89,
|
|
1141.98,
|
|
1056.97,
|
|
992.46,
|
|
1155.99,
|
|
827.01,
|
|
1257.98,
|
|
1232.67,
|
|
871.26,
|
|
860.88,
|
|
1158.03,
|
|
1222.72,
|
|
1221.04,
|
|
949.99,
|
|
987.01,
|
|
733.99,
|
|
592.97,
|
|
]
|
|
|
|
# Start Solution (binary)
|
|
start_solution = None
|
|
|
|
# Define parameters for the optimization problem
|
|
return GeneticOptimizationParameters(
|
|
**{
|
|
"ems": {
|
|
"preis_euro_pro_wh_akku": 0e-05,
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
"gesamtlast": gesamtlast,
|
|
"pv_prognose_wh": pv_forecast,
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
},
|
|
"pv_akku": {
|
|
"device_id": "battery 1",
|
|
"capacity_wh": 26400,
|
|
"initial_soc_percentage": 15,
|
|
"min_soc_percentage": 15,
|
|
},
|
|
"inverter": {
|
|
"device_id": "inverter 1",
|
|
"max_power_wh": 10000,
|
|
"battery_id": "battery 1",
|
|
},
|
|
"eauto": {
|
|
"device_id": "electric vehicle 1",
|
|
"min_soc_percentage": 50,
|
|
"capacity_wh": 60000,
|
|
"charging_efficiency": 0.95,
|
|
"max_charge_power_w": 11040,
|
|
"initial_soc_percentage": 5,
|
|
},
|
|
"temperature_forecast": temperature_forecast,
|
|
"start_solution": start_solution,
|
|
}
|
|
)
|
|
|
|
|
|
def run_optimization(
|
|
real_world: bool, start_hour: int, verbose: bool, seed: int, parameters_file: str, ngen: int
|
|
) -> Any:
|
|
"""Run the optimization problem.
|
|
|
|
Args:
|
|
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
|
|
verbose (bool, optional): Whether to print verbose output. Defaults to False.
|
|
|
|
Returns:
|
|
dict: Optimization result as a dictionary
|
|
"""
|
|
# Prepare parameters
|
|
if parameters_file:
|
|
with open(parameters_file, "r") as f:
|
|
parameters = GeneticOptimizationParameters(**json.load(f))
|
|
elif real_world:
|
|
parameters = prepare_optimization_real_parameters()
|
|
else:
|
|
parameters = prepare_optimization_parameters()
|
|
logger.info("Optimization Parameters:")
|
|
logger.info(parameters.model_dump_json(indent=4))
|
|
|
|
if start_hour is None:
|
|
start_datetime = None
|
|
else:
|
|
start_datetime = to_datetime().set(hour=start_hour)
|
|
|
|
asyncio.run(
|
|
ems_eos.run(
|
|
start_datetime=start_datetime,
|
|
mode=EnergyManagementMode.OPTIMIZATION,
|
|
genetic_parameters=parameters,
|
|
genetic_individuals=ngen,
|
|
genetic_seed=seed,
|
|
)
|
|
)
|
|
|
|
return ems_eos.genetic_solution().model_dump_json()
|
|
|
|
|
|
def main():
|
|
"""Main function to run the optimization script with optional profiling."""
|
|
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
|
|
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
|
|
parser.add_argument(
|
|
"--verbose", action="store_true", help="Enable verbose output during optimization"
|
|
)
|
|
parser.add_argument(
|
|
"--real-world", action="store_true", help="Use real world data for predictions"
|
|
)
|
|
parser.add_argument(
|
|
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
|
|
)
|
|
parser.add_argument(
|
|
"--parameters-file",
|
|
type=str,
|
|
default="",
|
|
help="Load optimization parameters from json file (default: unset)",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="Use fixed random seed (default: 42)")
|
|
parser.add_argument(
|
|
"--ngen",
|
|
type=int,
|
|
default=400,
|
|
help="Number of generations during optimization process (default: 400)",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.profile:
|
|
# Run with profiling
|
|
profiler = cProfile.Profile()
|
|
try:
|
|
result = profiler.runcall(
|
|
run_optimization,
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
# Print profiling statistics
|
|
stats = pstats.Stats(profiler)
|
|
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
|
|
# Print result
|
|
if args.verbose:
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
else:
|
|
# Run without profiling
|
|
try:
|
|
start_time = time.time()
|
|
result = run_optimization(
|
|
real_world=args.real_world,
|
|
start_hour=args.start_hour,
|
|
verbose=args.verbose,
|
|
seed=args.seed,
|
|
parameters_file=args.parameters_file,
|
|
ngen=args.ngen,
|
|
)
|
|
end_time = time.time()
|
|
elapsed_time = end_time - start_time
|
|
if args.verbose:
|
|
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
|
|
print("\nOptimization Result:")
|
|
print(result)
|
|
|
|
except Exception as e:
|
|
print(f"Error during optimization: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|