Files
EOS/single_test_optimization.py
Bobby Noelte b01bb1c61c fix: load data for automatic optimization (#731)
Automatic optimization used to take the adjusted load data even if there were no
measurements leading to 0 load values.

Split LoadAkkudoktor into LoadAkkudoktor and LoadAkkudoktorAdjusted. This allows
to select load data either purely from the load data database or load data additionally
adjusted by load measurements. Some value names have been adapted to denote
also the unit of a value.

For better load bug squashing the optimization solution data availability was
improved. For better data visbility prediction data can now be distinguished from
solution data in the generic optimization solution.

Some predictions that may be of interest to understand the solution were added.

Documentation was updated to resemble the addition load prediction provider and
the value name changes.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-11-01 00:49:11 +01:00

524 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import asyncio
import cProfile
import json
import pstats
import sys
import time
from typing import Any
import numpy as np
from loguru import logger
from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.core.emsettings import EnergyManagementMode
from akkudoktoreos.optimization.genetic import (
GeneticOptimizationParameters,
)
from akkudoktoreos.prediction.prediction import get_prediction
from akkudoktoreos.utils.datetimeutil import to_datetime
config_eos = get_config()
prediction_eos = get_prediction()
ems_eos = get_ems()
def prepare_optimization_real_parameters() -> GeneticOptimizationParameters:
"""Prepare and return optimization parameters with real world data.
Returns:
GeneticOptimizationParameters: Configured optimization parameters
"""
# Make a config
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"optimization": {
"horizon_hours": 24,
"interval": 3600,
"genetic": {
"individuals": 300,
"generations": 400,
"seed": None,
"penalties": {
"ev_soc_miss": 10,
},
},
},
# PV Forecast
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
# Weather Forecast
"weather": {
"provider": "ClearOutside",
},
# Electricity Price Forecast
"elecprice": {
"provider": "ElecPriceAkkudoktor",
},
# Load Forecast
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"LoadAkkudoktor": {
"loadakkudoktor_year_energy_kwh": 5000, # Energy consumption per year in kWh
},
},
},
# -- Simulations --
# Assure we have charge rates for the EV
"devices": {
"max_electric_vehicles": 1,
"electric_vehicles": [
{
"charge_rates": [
0.0,
6.0 / 16.0,
8.0 / 16.0,
10.0 / 16.0,
12.0 / 16.0,
14.0 / 16.0,
1.0,
],
},
],
},
}
# Update/ set configuration
config_eos.merge_settings_from_dict(settings)
# Get current prediction data for optimization run
ems_eos.set_start_datetime()
print(
f"Real data prediction from {prediction_eos.ems_start_datetime} to {prediction_eos.end_datetime}"
)
prediction_eos.update_data()
# PV Forecast (in W)
pv_forecast = prediction_eos.key_to_array(
key="pvforecast_ac_power",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"pv_forecast: {pv_forecast}")
# Temperature Forecast (in degree C)
temperature_forecast = prediction_eos.key_to_array(
key="weather_temp_air",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"temperature_forecast: {temperature_forecast}")
# Electricity Price (in Euro per Wh)
strompreis_euro_pro_wh = prediction_eos.key_to_array(
key="elecprice_marketprice_wh",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"strompreis_euro_pro_wh: {strompreis_euro_pro_wh}")
# Overall System Load (in W)
gesamtlast = prediction_eos.key_to_array(
key="load_mean",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"gesamtlast: {gesamtlast}")
# Start Solution (binary)
start_solution = None
print(f"start_solution: {start_solution}")
# Define parameters for the optimization problem
return GeneticOptimizationParameters(
**{
"ems": {
"preis_euro_pro_wh_akku": 0e-05,
"einspeiseverguetung_euro_pro_wh": 7e-05,
"gesamtlast": gesamtlast,
"pv_prognose_wh": pv_forecast,
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery 1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {
"device_id": "inverter 1",
"max_power_wh": 10000,
"battery_id": "battery 1",
},
"eauto": {
"device_id": "electric vehicle 1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
)
def prepare_optimization_parameters() -> GeneticOptimizationParameters:
"""Prepare and return optimization parameters with predefined data.
Returns:
GeneticOptimizationParameters: Configured optimization parameters
"""
# Initialize the optimization problem using the default configuration
config_eos.merge_settings_from_dict(
{
"prediction": {"hours": 48},
"optimization": {
"horizon_hours": 48,
"interval": 3600,
"genetic": {
"individuals": 300,
"generations": 400,
"seed": None,
"penalties": {
"ev_soc_miss": 10,
},
},
},
# Assure we have charge rates for the EV
"devices": {
"max_electric_vehicles": 1,
"electric_vehicles": [
{
"device_id": "Default EV",
"charge_rates": [
0.0,
6.0 / 16.0,
8.0 / 16.0,
10.0 / 16.0,
12.0 / 16.0,
14.0 / 16.0,
1.0,
],
},
],
},
}
)
# PV Forecast (in W)
pv_forecast = np.zeros(48)
pv_forecast[12] = 5000
# Temperature Forecast (in degree C)
temperature_forecast = [
18.3,
17.8,
16.9,
16.2,
15.6,
15.1,
14.6,
14.2,
14.3,
14.8,
15.7,
16.7,
17.4,
18.0,
18.6,
19.2,
19.1,
18.7,
18.5,
17.7,
16.2,
14.6,
13.6,
13.0,
12.6,
12.2,
11.7,
11.6,
11.3,
11.0,
10.7,
10.2,
11.4,
14.4,
16.4,
18.3,
19.5,
20.7,
21.9,
22.7,
23.1,
23.1,
22.8,
21.8,
20.2,
19.1,
18.0,
17.4,
]
# Electricity Price (in Euro per Wh)
strompreis_euro_pro_wh = np.full(48, 0.001)
strompreis_euro_pro_wh[0:10] = 0.00001
strompreis_euro_pro_wh[11:15] = 0.00005
strompreis_euro_pro_wh[20] = 0.00001
# Overall System Load (in W)
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Start Solution (binary)
start_solution = None
# Define parameters for the optimization problem
return GeneticOptimizationParameters(
**{
"ems": {
"preis_euro_pro_wh_akku": 0e-05,
"einspeiseverguetung_euro_pro_wh": 7e-05,
"gesamtlast": gesamtlast,
"pv_prognose_wh": pv_forecast,
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery 1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {
"device_id": "inverter 1",
"max_power_wh": 10000,
"battery_id": "battery 1",
},
"eauto": {
"device_id": "electric vehicle 1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
)
def run_optimization(
real_world: bool, start_hour: int, verbose: bool, seed: int, parameters_file: str, ngen: int
) -> Any:
"""Run the optimization problem.
Args:
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
verbose (bool, optional): Whether to print verbose output. Defaults to False.
Returns:
dict: Optimization result as a dictionary
"""
# Prepare parameters
if parameters_file:
with open(parameters_file, "r") as f:
parameters = GeneticOptimizationParameters(**json.load(f))
elif real_world:
parameters = prepare_optimization_real_parameters()
else:
parameters = prepare_optimization_parameters()
logger.info("Optimization Parameters:")
logger.info(parameters.model_dump_json(indent=4))
if start_hour is None:
start_datetime = None
else:
start_datetime = to_datetime().set(hour=start_hour)
asyncio.run(
ems_eos.run(
start_datetime=start_datetime,
mode=EnergyManagementMode.OPTIMIZATION,
genetic_parameters=parameters,
genetic_individuals=ngen,
genetic_seed=seed,
)
)
return ems_eos.genetic_solution().model_dump_json()
def main():
"""Main function to run the optimization script with optional profiling."""
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
parser.add_argument(
"--verbose", action="store_true", help="Enable verbose output during optimization"
)
parser.add_argument(
"--real-world", action="store_true", help="Use real world data for predictions"
)
parser.add_argument(
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
)
parser.add_argument(
"--parameters-file",
type=str,
default="",
help="Load optimization parameters from json file (default: unset)",
)
parser.add_argument("--seed", type=int, default=42, help="Use fixed random seed (default: 42)")
parser.add_argument(
"--ngen",
type=int,
default=400,
help="Number of generations during optimization process (default: 400)",
)
args = parser.parse_args()
if args.profile:
# Run with profiling
profiler = cProfile.Profile()
try:
result = profiler.runcall(
run_optimization,
real_world=args.real_world,
start_hour=args.start_hour,
verbose=args.verbose,
seed=args.seed,
parameters_file=args.parameters_file,
ngen=args.ngen,
)
# Print profiling statistics
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
# Print result
if args.verbose:
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
else:
# Run without profiling
try:
start_time = time.time()
result = run_optimization(
real_world=args.real_world,
start_hour=args.start_hour,
verbose=args.verbose,
seed=args.seed,
parameters_file=args.parameters_file,
ngen=args.ngen,
)
end_time = time.time()
elapsed_time = end_time - start_time
if args.verbose:
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()