EOS/modules/class_pv_forecast.py
2024-02-18 21:28:02 +01:00

84 lines
2.9 KiB
Python

from flask import Flask, jsonify, request
import numpy as np
from datetime import datetime
from pprint import pprint
import json, sys
class PVForecast:
class ForecastData:
def __init__(self, date_time, dc_power, ac_power, windspeed_10m, temperature):
self.date_time = date_time
self.dc_power = dc_power
self.ac_power = ac_power
self.windspeed_10m = windspeed_10m
self.temperature = temperature
# Getter für die ForecastData-Attribute
def get_date_time(self):
return self.date_time
def get_dc_power(self):
return self.dc_power
def get_ac_power(self):
return self.ac_power
def get_windspeed_10m(self):
return self.windspeed_10m
def get_temperature(self):
return self.temperature
def __init__(self, filepath):
self.filepath = filepath
self.meta = {}
self.forecast_data = []
self.load_data()
def load_data(self):
with open(self.filepath, 'r') as file:
data = json.load(file)
self.meta = data.get('meta', {})
values = data.get('values', [])[0]
for value in values:
# Erstelle eine ForecastData-Instanz für jeden Wert in der Liste
forecast = self.ForecastData(
date_time=value.get('datetime'),
dc_power=value.get('dcPower'),
ac_power=value.get('power'),
windspeed_10m=value.get('windspeed_10m'),
temperature=value.get('temperature')
)
self.forecast_data.append(forecast)
def get_forecast_data(self):
return self.forecast_data
def get_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
daily_forecast = []
for d in daily_forecast_obj:
daily_forecast.append(d.get_ac_power())
return np.array(daily_forecast)
def get_temperature_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
daily_forecast = []
for d in daily_forecast_obj:
daily_forecast.append(d.get_temperature())
return np.array(daily_forecast)
# Beispiel für die Verwendung der Klasse
if __name__ == '__main__':
forecast = PVForecast(r'..\test_data\pvprognose.json')
for data in forecast.get_forecast_data():
print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())