EOS/src/akkudoktoreos/utils/visualize.py
Dominique Lasserre 267a9bf427 pvforecast: Some values optional. Closes #292 (#293)
* temperature, relativehumidity_2m, windspeed_10m can be null
 * prettify pv_forecast_input_1.json (and add null value)
2024-12-30 13:07:08 +01:00

509 lines
18 KiB
Python

import os
from collections.abc import Sequence
from typing import Callable, Optional, Union
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from akkudoktoreos.core.coreabc import ConfigMixin
from akkudoktoreos.optimization.genetic import OptimizationParameters
class VisualizationReport(ConfigMixin):
def __init__(self, filename: str = "visualization_results.pdf") -> None:
# Initialize the report with a given filename and empty groups
self.filename = filename
self.groups: list[list[Callable[[], None]]] = [] # Store groups of charts
self.current_group: list[
Callable[[], None]
] = [] # Store current group of charts being created
self.pdf_pages = PdfPages(filename, metadata={}) # Initialize PdfPages without metadata
def add_chart_to_group(self, chart_func: Callable[[], None]) -> None:
"""Add a chart function to the current group."""
self.current_group.append(chart_func)
def finalize_group(self) -> None:
"""Finalize the current group and prepare for a new group."""
if self.current_group: # Check if current group has charts
self.groups.append(self.current_group) # Add current group to groups
else:
print("Finalizing an empty group!") # Warn if group is empty
self.current_group = [] # Reset current group for new charts
def _initialize_pdf(self) -> None:
"""Create the output directory if it doesn't exist and initialize the PDF."""
output_dir = self.config.data_output_path
# If self.filename is already a valid path, use it; otherwise, combine it with output_dir
if os.path.isabs(self.filename):
output_file = self.filename
else:
output_dir.mkdir(parents=True, exist_ok=True)
output_file = os.path.join(output_dir, self.filename)
self.pdf_pages = PdfPages(
output_file, metadata={}
) # Re-initialize PdfPages without metadata
def _save_group_to_pdf(self, group: list[Callable[[], None]]) -> None:
"""Save a group of charts to the PDF."""
fig_count = len(group) # Number of charts in the group
if fig_count == 0:
print("Attempted to save an empty group to PDF!") # Warn if group is empty
return # Prevent saving an empty group
# Create a figure layout based on the number of charts
if fig_count == 3:
# Layout for three charts: 1 full-width on top, 2 below
fig = plt.figure(figsize=(14, 10)) # Set a larger figure size
ax1 = fig.add_subplot(2, 1, 1) # Full-width subplot
ax2 = fig.add_subplot(2, 2, 3) # Bottom left subplot
ax3 = fig.add_subplot(2, 2, 4) # Bottom right subplot
# Store axes in a list for easy access
axs = [ax1, ax2, ax3]
else:
# Dynamic layout for any other number of charts
cols = 2 if fig_count > 1 else 1 # Determine number of columns
rows = (fig_count // 2) + (fig_count % 2) # Calculate required rows
fig, axs = plt.subplots(rows, cols, figsize=(14, 7 * rows)) # Create subplots
# If axs is a 2D array of axes, flatten it into a 1D list
# if isinstance(axs, np.ndarray):
axs = list(np.array(axs).reshape(-1))
# Draw each chart in the corresponding axes
for idx, chart_func in enumerate(group):
plt.sca(axs[idx]) # Set current axes
chart_func() # Call the chart function to draw
# Hide any unused axes
for idx in range(fig_count, len(axs)):
axs[idx].set_visible(False) # Hide unused axes
self.pdf_pages.savefig(fig) # Save the figure to the PDF
plt.close(fig) # Close the figure to free up memory
def create_line_chart(
self,
start_hour: Optional[int],
y_list: list[Union[np.ndarray, list[Optional[float]], list[float]]],
title: str,
xlabel: str,
ylabel: str,
labels: Optional[list[str]] = None,
markers: Optional[list[str]] = None,
line_styles: Optional[list[str]] = None,
) -> None:
"""Create a line chart and add it to the current group."""
def chart() -> None:
nonlocal start_hour # Allow modifying `x` within the nested function
if start_hour is None:
start_hour = 0
first_element = y_list[0]
x: np.ndarray
# Case 1: y_list contains np.ndarray elements
if isinstance(first_element, np.ndarray):
x = np.arange(
start_hour, start_hour + len(first_element)
) # Start at x and extend by ndarray length
# Case 2: y_list contains float elements (1D list)
elif isinstance(first_element, float):
x = np.arange(
start_hour, start_hour + len(y_list)
) # Start at x and extend by list length
# Case 3: y_list is a nested list of floats
elif isinstance(first_element, list) and all(
isinstance(i, float) for i in first_element
):
max_len = max(len(sublist) for sublist in y_list)
x = np.arange(
start_hour, start_hour + max_len
) # Start at x and extend by max sublist length
else:
print(f"Unsupported y_list structure: {type(y_list)}, {y_list}")
raise TypeError(
"y_list elements must be np.ndarray, float, or a nested list of floats"
)
for idx, y_data in enumerate(y_list):
label = labels[idx] if labels else None # Chart label
marker = markers[idx] if markers and idx < len(markers) else "o" # Marker style
line_style = (
line_styles[idx] if line_styles and idx < len(line_styles) else "-"
) # Line style
plt.plot(x, y_data, label=label, marker=marker, linestyle=line_style) # Plot line
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
if labels:
plt.legend() # Show legend if labels are provided
plt.grid(True) # Show grid
plt.xlim(x[0] - 0.5, x[-1] + 0.5) # Adjust x-limits
self.add_chart_to_group(chart) # Add chart function to current group
def create_scatter_plot(
self,
x: np.ndarray,
y: np.ndarray,
title: str,
xlabel: str,
ylabel: str,
c: Optional[np.ndarray] = None,
) -> None:
"""Create a scatter plot and add it to the current group."""
def chart() -> None:
scatter = plt.scatter(x, y, c=c, cmap="viridis") # Create scatter plot
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
if c is not None:
plt.colorbar(scatter, label="Constraint") # Add colorbar if color data is provided
plt.grid(True) # Show grid
self.add_chart_to_group(chart) # Add chart function to current group
def create_bar_chart(
self,
labels: list[str],
values_list: Sequence[Union[int, float, list[Union[int, float]]]],
title: str,
ylabel: str,
xlabels: Optional[list[str]] = None,
label_names: Optional[list[str]] = None,
colors: Optional[list[str]] = None,
bar_width: float = 0.35,
bottom: Optional[int] = None,
) -> None:
"""Create a bar chart and add it to the current group."""
def chart() -> None:
num_groups = len(values_list) # Number of data groups
num_bars = len(labels) # Number of bars (categories)
# Calculate the positions for each bar group on the x-axis
x = np.arange(num_bars) # x positions for bars
offset = np.linspace(
-bar_width * (num_groups - 1) / 2, bar_width * (num_groups - 1) / 2, num_groups
) # Bar offsets
for i, values in enumerate(values_list):
bottom_use = None
if bottom == i + 1: # Set bottom if specified
bottom_use = 1
color = colors[i] if colors and i < len(colors) else None # Bar color
label_name = label_names[i] if label_names else None # Bar label
plt.bar(
x + offset[i],
values,
bar_width,
label=label_name,
color=color,
zorder=2,
alpha=0.6,
bottom=bottom_use,
) # Create bar
if xlabels:
plt.xticks(x, labels) # Add custom labels to the x-axis
plt.title(title) # Set title
plt.ylabel(ylabel) # Set y-axis label
if colors and label_names:
plt.legend() # Show legend if colors are provided
plt.grid(True, zorder=0) # Show grid in the background
plt.xlim(-0.5, len(labels) - 0.5) # Set x-axis limits
self.add_chart_to_group(chart) # Add chart function to current group
def create_violin_plot(
self, data_list: list[np.ndarray], labels: list[str], title: str, xlabel: str, ylabel: str
) -> None:
"""Create a violin plot and add it to the current group."""
def chart() -> None:
plt.violinplot(data_list, showmeans=True, showmedians=True) # Create violin plot
plt.xticks(np.arange(1, len(labels) + 1), labels) # Set x-ticks and labels
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
plt.grid(True) # Show grid
self.add_chart_to_group(chart) # Add chart function to current group
def generate_pdf(self) -> None:
"""Generate the PDF report with all the added chart groups."""
self._initialize_pdf() # Initialize the PDF
for group in self.groups:
self._save_group_to_pdf(group) # Save each group to the PDF
self.pdf_pages.close() # Close the PDF to finalize the report
def prepare_visualize(
parameters: OptimizationParameters,
results: dict,
filename: str = "visualization_results.pdf",
start_hour: Optional[int] = 0,
) -> None:
report = VisualizationReport(filename)
# Group 1:
report.create_line_chart(
None,
[parameters.ems.gesamtlast],
title="Load Profile",
xlabel="Hours",
ylabel="Load (Wh)",
labels=["Total Load (Wh)"],
markers=["s"],
line_styles=["-"],
)
report.create_line_chart(
None,
[parameters.ems.pv_prognose_wh],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
report.create_line_chart(
None,
[np.full(len(parameters.ems.gesamtlast), parameters.ems.einspeiseverguetung_euro_pro_wh)],
title="Remuneration",
xlabel="Hours",
ylabel="€/Wh",
)
if parameters.temperature_forecast:
report.create_line_chart(
None,
[parameters.temperature_forecast],
title="Temperature Forecast",
xlabel="Hours",
ylabel="°C",
)
report.finalize_group()
# Group 2:
report.create_line_chart(
start_hour,
[
results["result"]["Last_Wh_pro_Stunde"],
results["result"]["Home_appliance_wh_per_hour"],
results["result"]["Netzeinspeisung_Wh_pro_Stunde"],
results["result"]["Netzbezug_Wh_pro_Stunde"],
results["result"]["Verluste_Pro_Stunde"],
],
title="Energy Flow per Hour",
xlabel="Hours",
ylabel="Energy (Wh)",
labels=[
"Load (Wh)",
"Household Device (Wh)",
"Grid Feed-in (Wh)",
"Grid Consumption (Wh)",
"Losses (Wh)",
],
markers=["o", "o", "x", "^", "^"],
line_styles=["-", "--", ":", "-.", "-"],
)
report.finalize_group()
# Group 3:
report.create_line_chart(
start_hour,
[results["result"]["akku_soc_pro_stunde"], results["result"]["EAuto_SoC_pro_Stunde"]],
title="Battery SOC",
xlabel="Hours",
ylabel="%",
labels=[
"Battery SOC (%)",
"Electric Vehicle SOC (%)",
],
markers=["o", "x"],
)
report.create_line_chart(
None,
[parameters.ems.strompreis_euro_pro_wh],
title="Electricity Price",
xlabel="Hours",
ylabel="Price (€/Wh)",
)
report.create_bar_chart(
list(str(i) for i in range(len(results["ac_charge"]))),
[results["ac_charge"], results["dc_charge"], results["discharge_allowed"]],
title="AC/DC Charging and Discharge Overview",
ylabel="Relative Power (0-1) / Discharge (0 or 1)",
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
colors=["blue", "green", "red"],
bottom=3,
)
report.finalize_group()
# Group 4:
report.create_line_chart(
start_hour,
[
results["result"]["Kosten_Euro_pro_Stunde"],
results["result"]["Einnahmen_Euro_pro_Stunde"],
],
title="Financial Balance per Hour",
xlabel="Hours",
ylabel="Euro",
labels=["Costs", "Revenue"],
)
extra_data = results["extra_data"]
report.create_scatter_plot(
extra_data["verluste"],
extra_data["bilanz"],
title="",
xlabel="losses",
ylabel="balance",
c=extra_data["nebenbedingung"],
)
# Example usage
values_list = [
[
results["result"]["Gesamtkosten_Euro"],
results["result"]["Gesamteinnahmen_Euro"],
results["result"]["Gesamtbilanz_Euro"],
]
]
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
report.create_bar_chart(
labels=labels,
values_list=values_list,
title="Financial Overview",
ylabel="Euro",
xlabels=["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"],
)
report.finalize_group()
# Group 1: Scatter plot of losses vs balance with color-coded constraints
f1 = np.array(extra_data["verluste"]) # Losses
f2 = np.array(extra_data["bilanz"]) # Balance
n1 = np.array(extra_data["nebenbedingung"]) # Constraints
# Filter data where 'nebenbedingung' < 0.01
filtered_indices = n1 < 0.01
filtered_losses = f1[filtered_indices]
filtered_balance = f2[filtered_indices]
# Group 2: Violin plot for filtered losses
if filtered_losses.size > 0:
report.create_violin_plot(
data_list=[filtered_losses], # Data for filtered losses
labels=["Filtered Losses"], # Label for the violin plot
title="Violin Plot for Filtered Losses (Constraint < 0.01)",
xlabel="Losses",
ylabel="Values",
)
else:
print("No data available for filtered losses violin plot (Constraint < 0.01)")
# Group 3: Violin plot for filtered balance
if filtered_balance.size > 0:
report.create_violin_plot(
data_list=[filtered_balance], # Data for filtered balance
labels=["Filtered Balance"], # Label for the violin plot
title="Violin Plot for Filtered Balance (Constraint < 0.01)",
xlabel="Balance",
ylabel="Values",
)
else:
print("No data available for filtered balance violin plot (Constraint < 0.01)")
if filtered_balance.size > 0 or filtered_losses.size > 0:
report.finalize_group()
# Generate the PDF report
report.generate_pdf()
def generate_example_report(filename: str = "example_report.pdf") -> None:
"""Generate example visualization report."""
report = VisualizationReport(filename)
x_hours = 0 # Define x-axis start values (e.g., hours)
# Group 1: Adding charts to be displayed on the same page
report.create_line_chart(
x_hours,
[np.array([10, 20, 30, 40])],
title="Load Profile",
xlabel="Hours",
ylabel="Load (Wh)",
)
report.create_line_chart(
x_hours,
[np.array([5, 15, 25, 35])],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
report.create_line_chart(
x_hours,
[np.array([5, 15, 25, 35])],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
# Note: If there are only 3 charts per page, the first is as wide as the page
report.finalize_group() # Finalize the first group of charts
# Group 2: Adding more charts to be displayed on another page
report.create_line_chart(
x_hours,
[np.array([0.2, 0.25, 0.3, 0.35])],
title="Electricity Price",
xlabel="Hours",
ylabel="Price (€/Wh)",
)
report.create_bar_chart(
["Costs", "Revenue", "Balance"],
[[500.0], [600.0], [100.0]],
title="Financial Overview",
ylabel="Euro",
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
colors=["red", "green", "blue"],
)
report.create_scatter_plot(
np.array([5, 6, 7, 8]),
np.array([100, 200, 150, 250]),
title="Scatter Plot",
xlabel="Losses",
ylabel="Balance",
c=np.array([0.1, 0.2, 0.3, 0.4]),
)
report.finalize_group() # Finalize the second group of charts
# Group 3: Adding a violin plot
data = [np.random.normal(0, std, 100) for std in range(1, 5)] # Example data for violin plot
report.create_violin_plot(
data,
labels=["Group 1", "Group 2", "Group 3", "Group 4"],
title="Violin Plot",
xlabel="Groups",
ylabel="Values",
)
data = [np.random.normal(0, 1, 100)] # Example data for violin plot
report.create_violin_plot(
data, labels=["Group 1"], title="Violin Plot", xlabel="Group", ylabel="Values"
)
report.finalize_group() # Finalize the third group of charts
# Generate the PDF report
report.generate_pdf()
if __name__ == "__main__":
generate_example_report()