mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-06-27 16:36:53 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
* Fix logging configuration issues that made logging stop operation. Switch to Loguru logging (from Python logging). Enable console and file logging with different log levels. Add logging documentation. * Fix logging configuration and EOS configuration out of sync. Added tracking support for nested value updates of Pydantic models. This used to update the logging configuration when the EOS configurationm for logging is changed. Should keep logging config and EOS config in sync as long as all changes to the EOS logging configuration are done by set_nested_value(), which is the case for the REST API. * Fix energy management task looping endlessly after the second update when trying to update the last_update datetime. * Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance. * Fix usage of model classes instead of model instances in nested value access when evaluation the value type that is associated to each key. * Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider. * Fix documentation qirks and add EOS Connect to integrations. * Support deprecated fields in configuration in documentation generation and EOSdash. * Enhance EOSdash demo to show BrightSky humidity data (that is often missing) * Update documentation reference to German EOS installation videos. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
331 lines
13 KiB
Python
331 lines
13 KiB
Python
from typing import Optional
|
|
|
|
import pandas as pd
|
|
import pendulum
|
|
import pytest
|
|
from pydantic import Field, ValidationError
|
|
|
|
from akkudoktoreos.core.pydantic import (
|
|
PydanticBaseModel,
|
|
PydanticDateTimeData,
|
|
PydanticDateTimeDataFrame,
|
|
PydanticDateTimeSeries,
|
|
PydanticModelNestedValueMixin,
|
|
)
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
|
|
|
|
|
class PydanticTestModel(PydanticBaseModel):
|
|
datetime_field: pendulum.DateTime = Field(
|
|
..., description="A datetime field with pendulum support."
|
|
)
|
|
optional_field: Optional[str] = Field(default=None, description="An optional field.")
|
|
|
|
|
|
class Address(PydanticBaseModel):
|
|
city: Optional[str] = None
|
|
postal_code: Optional[str] = None
|
|
|
|
|
|
class User(PydanticBaseModel):
|
|
name: str
|
|
addresses: Optional[list[Address]] = None
|
|
settings: Optional[dict[str, str]] = None
|
|
|
|
|
|
class TestPydanticModelNestedValueMixin:
|
|
"""Umbrella test class to group all test cases for `PydanticModelNestedValueMixin`."""
|
|
|
|
@pytest.fixture
|
|
def user_instance(self):
|
|
"""Fixture to initialize a sample User instance."""
|
|
return User(name="Alice", addresses=None, settings=None)
|
|
|
|
def test_get_key_types_for_simple_field(self):
|
|
"""Test _get_key_types for a simple string field."""
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "name")
|
|
assert key_types == [str], f"Expected [str], got {key_types}"
|
|
|
|
def test_get_key_types_for_list_of_models(self):
|
|
"""Test _get_key_types for a list of Address models."""
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "addresses")
|
|
assert key_types == [list, Address], f"Expected [list, Address], got {key_types}"
|
|
|
|
def test_get_key_types_for_dict_field(self):
|
|
"""Test _get_key_types for a dictionary field."""
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "settings")
|
|
assert key_types == [dict, str], f"Expected [dict, str], got {key_types}"
|
|
|
|
def test_get_key_types_for_optional_field(self):
|
|
"""Test _get_key_types correctly handles Optional fields."""
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(Address, "city")
|
|
assert key_types == [str], f"Expected [str], got {key_types}"
|
|
|
|
def test_get_key_types_for_non_existent_field(self):
|
|
"""Test _get_key_types raises an error for non-existent field."""
|
|
with pytest.raises(TypeError):
|
|
PydanticModelNestedValueMixin._get_key_types(User, "unknown_field")
|
|
|
|
def test_get_key_types_for_instance_raises(self, user_instance):
|
|
"""Test _get_key_types raises an error for an instance."""
|
|
with pytest.raises(TypeError):
|
|
PydanticModelNestedValueMixin._get_key_types(user_instance, "unknown_field")
|
|
|
|
def test_set_nested_value_in_model(self, user_instance):
|
|
"""Test setting nested value in a model field (Address -> city)."""
|
|
assert user_instance.addresses is None
|
|
|
|
user_instance.set_nested_value("addresses/0/city", "New York")
|
|
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "New York", "The city should be set to 'New York'"
|
|
|
|
def test_set_nested_value_in_dict(self, user_instance):
|
|
"""Test setting nested value in a dictionary field (settings -> theme)."""
|
|
assert user_instance.settings is None
|
|
|
|
user_instance.set_nested_value("settings/theme", "dark")
|
|
|
|
assert user_instance.settings is not None
|
|
assert user_instance.settings["theme"] == "dark", "The theme should be set to 'dark'"
|
|
|
|
def test_set_nested_value_in_list(self, user_instance):
|
|
"""Test setting nested value in a list of models (addresses -> 1 -> city)."""
|
|
user_instance.set_nested_value("addresses/1/city", "Los Angeles")
|
|
|
|
# Check if the city in the second address is set correctly
|
|
assert user_instance.addresses[1].city == "Los Angeles", (
|
|
"The city at index 1 should be set to 'Los Angeles'"
|
|
)
|
|
|
|
def test_set_nested_value_in_optional_field(self, user_instance):
|
|
"""Test setting value in an Optional field (addresses)."""
|
|
user_instance.set_nested_value("addresses/0", Address(city="Chicago"))
|
|
|
|
# Check if the first address is set correctly
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "Chicago", "The city should be set to 'Chicago'"
|
|
|
|
def test_set_nested_value_with_empty_list(self):
|
|
"""Test setting value in an empty list of models."""
|
|
user = User(name="Bob", addresses=[])
|
|
user.set_nested_value("addresses/0/city", "Seattle")
|
|
|
|
assert user.addresses is not None
|
|
assert user.addresses[0].city == "Seattle", (
|
|
"The first address should have the city 'Seattle'"
|
|
)
|
|
|
|
def test_set_nested_value_with_missing_key_in_dict(self, user_instance):
|
|
"""Test setting value in a dict when the key does not exist."""
|
|
user_instance.set_nested_value("settings/language", "English")
|
|
|
|
assert user_instance.settings["language"] == "English", (
|
|
"The language setting should be 'English'"
|
|
)
|
|
|
|
def test_set_nested_value_for_non_existent_field(self):
|
|
"""Test attempting to set value for a non-existent field."""
|
|
user = User(name="John")
|
|
|
|
with pytest.raises(TypeError):
|
|
user.set_nested_value("non_existent_field", "Some Value")
|
|
|
|
def test_set_nested_value_with_invalid_type(self, user_instance):
|
|
"""Test setting value with an invalid type."""
|
|
with pytest.raises(ValueError):
|
|
user_instance.set_nested_value(
|
|
"addresses/0/city", 1234
|
|
) # city should be a string, not an integer
|
|
|
|
def test_set_nested_value_with_model_initialization(self):
|
|
"""Test setting a value in a model that should initialize a missing model."""
|
|
user = User(name="James", addresses=None)
|
|
user.set_nested_value("addresses/0/city", "Boston")
|
|
|
|
assert user.addresses is not None
|
|
assert user.addresses[0].city == "Boston", "The city should be set to 'Boston'"
|
|
assert isinstance(user.addresses[0], Address), (
|
|
"The first address should be an instance of Address"
|
|
)
|
|
|
|
def test_track_nested_value_simple_callback(self, user_instance):
|
|
user_instance.set_nested_value("addresses/0/city", "NY")
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "NY"
|
|
|
|
callback_calls = []
|
|
def cb(model, path, old, new):
|
|
callback_calls.append((path, old, new))
|
|
|
|
user_instance.track_nested_value("addresses/0/city", cb)
|
|
user_instance.set_nested_value("addresses/0/city", "LA")
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "LA"
|
|
assert callback_calls == [("addresses/0/city", "NY", "LA")]
|
|
|
|
def test_track_nested_value_prefix_triggers(self, user_instance):
|
|
user_instance.set_nested_value("addresses/0", Address(city="Berlin", postal_code="10000"))
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "Berlin"
|
|
|
|
cb_prefix = []
|
|
cb_exact = []
|
|
|
|
def cb1(model, path, old, new):
|
|
cb_prefix.append((path, old, new))
|
|
def cb2(model, path, old, new):
|
|
cb_exact.append((path, old, new))
|
|
|
|
user_instance.track_nested_value("addresses/0", cb1)
|
|
user_instance.track_nested_value("addresses/0/city", cb2)
|
|
user_instance.set_nested_value("addresses/0/city", "Munich")
|
|
assert user_instance.addresses is not None
|
|
assert user_instance.addresses[0].city == "Munich"
|
|
|
|
# Both callbacks should be triggered
|
|
assert cb_prefix == [("addresses/0/city", "Berlin", "Munich")]
|
|
assert cb_exact == [("addresses/0/city", "Berlin", "Munich")]
|
|
|
|
def test_track_nested_value_multiple_callbacks_same_path(self, user_instance):
|
|
user_instance.set_nested_value("addresses/0/city", "Berlin")
|
|
calls1 = []
|
|
calls2 = []
|
|
|
|
user_instance.track_nested_value("addresses/0/city", lambda lib, path, o, n: calls1.append((path, o, n)))
|
|
user_instance.track_nested_value("addresses/0/city", lambda lib, path, o, n: calls2.append((path, o, n)))
|
|
user_instance.set_nested_value("addresses/0/city", "Stuttgart")
|
|
|
|
assert calls1 == [("addresses/0/city", "Berlin", "Stuttgart")]
|
|
assert calls2 == [("addresses/0/city", "Berlin", "Stuttgart")]
|
|
|
|
def test_track_nested_value_invalid_path_raises(self, user_instance):
|
|
with pytest.raises(ValueError) as excinfo:
|
|
user_instance.track_nested_value("unknown_field", lambda model, path, o, n: None)
|
|
assert "is invalid" in str(excinfo.value)
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
user_instance.track_nested_value("unknown_field/0/city", lambda model, path, o, n: None)
|
|
assert "is invalid" in str(excinfo.value)
|
|
|
|
def test_track_nested_value_list_and_dict_path(self):
|
|
class Book(PydanticBaseModel):
|
|
title: str
|
|
|
|
class Library(PydanticBaseModel):
|
|
books: list[Book]
|
|
meta: dict[str, str] = {}
|
|
|
|
lib = Library(books=[Book(title="A")], meta={"location": "center"})
|
|
assert lib.meta["location"] == "center"
|
|
calls = []
|
|
|
|
# For list, only root attribute structure is checked, not indices
|
|
lib.track_nested_value("books/0/title", lambda lib, path, o, n: calls.append((path, o, n)))
|
|
lib.set_nested_value("books/0/title", "B")
|
|
assert lib.books[0].title == "B"
|
|
assert calls == [("books/0/title", "A", "B")]
|
|
|
|
# For dict, only root attribute structure is checked
|
|
meta_calls = []
|
|
lib.track_nested_value("meta/location", lambda lib, path, o, n: meta_calls.append((path, o, n)))
|
|
assert lib.meta["location"] == "center"
|
|
lib.set_nested_value("meta/location", "north")
|
|
assert lib.meta["location"] == "north"
|
|
assert meta_calls == [("meta/location", "center", "north")]
|
|
|
|
|
|
class TestPydanticBaseModel:
|
|
def test_valid_pendulum_datetime(self):
|
|
dt = pendulum.now()
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
assert model.datetime_field == dt
|
|
|
|
def test_invalid_datetime_string(self):
|
|
with pytest.raises(ValidationError, match="Cannot convert 'invalid_datetime' to datetime"):
|
|
PydanticTestModel(datetime_field="invalid_datetime")
|
|
|
|
def test_iso8601_serialization(self):
|
|
dt = pendulum.datetime(2024, 12, 21, 15, 0, 0)
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
serialized = model.to_dict()
|
|
expected_dt = to_datetime(dt)
|
|
result_dt = to_datetime(serialized["datetime_field"])
|
|
assert compare_datetimes(result_dt, expected_dt)
|
|
|
|
def test_reset_to_defaults(self):
|
|
dt = pendulum.now()
|
|
model = PydanticTestModel(datetime_field=dt, optional_field="some value")
|
|
model.reset_to_defaults()
|
|
assert model.datetime_field == dt
|
|
assert model.optional_field is None
|
|
|
|
def test_from_dict_and_to_dict(self):
|
|
dt = pendulum.now()
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
data = model.to_dict()
|
|
restored_model = PydanticTestModel.from_dict(data)
|
|
assert restored_model.datetime_field == dt
|
|
|
|
def test_to_json_and_from_json(self):
|
|
dt = pendulum.now()
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
json_data = model.to_json()
|
|
restored_model = PydanticTestModel.from_json(json_data)
|
|
assert restored_model.datetime_field == dt
|
|
|
|
|
|
class TestPydanticDateTimeData:
|
|
def test_valid_list_lengths(self):
|
|
data = {
|
|
"timestamps": ["2024-12-21T15:00:00+00:00"],
|
|
"values": [100],
|
|
}
|
|
model = PydanticDateTimeData(root=data)
|
|
assert pendulum.parse(model.root["timestamps"][0]) == pendulum.parse(
|
|
"2024-12-21T15:00:00+00:00"
|
|
)
|
|
|
|
def test_invalid_list_lengths(self):
|
|
data = {
|
|
"timestamps": ["2024-12-21T15:00:00+00:00"],
|
|
"values": [100, 200],
|
|
}
|
|
with pytest.raises(
|
|
ValidationError, match="All lists in the dictionary must have the same length"
|
|
):
|
|
PydanticDateTimeData(root=data)
|
|
|
|
|
|
class TestPydanticDateTimeDataFrame:
|
|
def test_valid_dataframe(self):
|
|
df = pd.DataFrame(
|
|
{
|
|
"value": [100, 200],
|
|
},
|
|
index=pd.to_datetime(["2024-12-21", "2024-12-22"]),
|
|
)
|
|
model = PydanticDateTimeDataFrame.from_dataframe(df)
|
|
result = model.to_dataframe()
|
|
|
|
# Check index
|
|
assert len(result.index) == len(df.index)
|
|
for i, dt in enumerate(df.index):
|
|
expected_dt = to_datetime(dt)
|
|
result_dt = to_datetime(result.index[i])
|
|
assert compare_datetimes(result_dt, expected_dt).equal
|
|
|
|
|
|
class TestPydanticDateTimeSeries:
|
|
def test_valid_series(self):
|
|
series = pd.Series([100, 200], index=pd.to_datetime(["2024-12-21", "2024-12-22"]))
|
|
model = PydanticDateTimeSeries.from_series(series)
|
|
result = model.to_series()
|
|
|
|
# Check index
|
|
assert len(result.index) == len(series.index)
|
|
for i, dt in enumerate(series.index):
|
|
expected_dt = to_datetime(dt)
|
|
result_dt = to_datetime(result.index[i])
|
|
assert compare_datetimes(result_dt, expected_dt).equal
|