mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
* Add EOS_CONFIG_DIR to set config dir (relative path to EOS_DIR or absolute path). - config_folder_path read-only - config_file_path read-only * Default values to support app start with empty config: - latitude/longitude (Berlin) - optimization_ev_available_charge_rates_percent (null, so model default value is used) - Enable Akkudoktor electricity price forecast (docker-compose). * Fix some endpoints (empty data, remove unused params, fix types). * cacheutil: Use cache dir. Closes #240 * Support EOS_LOGGING_LEVEL environment variable to set log level. * tests: All tests use separate temporary config - Add pytest switch --check-config-side-effect to check user config file existence after each test. Will also fail if user config existed before test execution (but will only check after the test has run). Enable flag in github workflow. - Globally mock platformdirs in config module. Now no longer required to patch individually. Function calls to config instance (e.g. merge_settings_from_dict) were unaffected previously. * Set Berlin as default location (default config/docker-compose).
567 lines
17 KiB
Python
567 lines
17 KiB
Python
import re
|
|
from datetime import datetime, timedelta, timezone
|
|
from pathlib import Path
|
|
from unittest.mock import Mock, patch
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pvlib
|
|
import pytest
|
|
from bs4 import BeautifulSoup
|
|
|
|
from akkudoktoreos.core.ems import get_ems
|
|
from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside
|
|
from akkudoktoreos.utils.cacheutil import CacheFileStore
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
|
|
|
DIR_TESTDATA = Path(__file__).absolute().parent.joinpath("testdata")
|
|
|
|
FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_HTML = DIR_TESTDATA.joinpath("weatherforecast_clearout_1.html")
|
|
FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA = DIR_TESTDATA.joinpath("weatherforecast_clearout_1.json")
|
|
|
|
|
|
@pytest.fixture
|
|
def weather_provider(config_eos):
|
|
"""Fixture to create a WeatherProvider instance."""
|
|
settings = {
|
|
"weather_provider": "ClearOutside",
|
|
"latitude": 50.0,
|
|
"longitude": 10.0,
|
|
}
|
|
config_eos.merge_settings_from_dict(settings)
|
|
return WeatherClearOutside()
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_clearout_1_html():
|
|
"""Fixture that returns sample forecast data report."""
|
|
with open(FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_HTML, "r") as f_res:
|
|
input_data = f_res.read()
|
|
return input_data
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_clearout_1_data():
|
|
"""Fixture that returns sample forecast data."""
|
|
with open(FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA, "r") as f_in:
|
|
json_str = f_in.read()
|
|
data = WeatherClearOutside.from_json(json_str)
|
|
return data
|
|
|
|
|
|
@pytest.fixture
|
|
def cache_store():
|
|
"""A pytest fixture that creates a new CacheFileStore instance for testing."""
|
|
return CacheFileStore()
|
|
|
|
|
|
# ------------------------------------------------
|
|
# General WeatherProvider
|
|
# ------------------------------------------------
|
|
|
|
|
|
def test_singleton_instance(weather_provider):
|
|
"""Test that WeatherForecast behaves as a singleton."""
|
|
another_instance = WeatherClearOutside()
|
|
assert weather_provider is another_instance
|
|
|
|
|
|
def test_invalid_provider(weather_provider, config_eos):
|
|
"""Test requesting an unsupported weather_provider."""
|
|
settings = {
|
|
"weather_provider": "<invalid>",
|
|
}
|
|
config_eos.merge_settings_from_dict(settings)
|
|
assert not weather_provider.enabled()
|
|
|
|
|
|
def test_invalid_coordinates(weather_provider, config_eos):
|
|
"""Test invalid coordinates raise ValueError."""
|
|
settings = {
|
|
"weather_provider": "ClearOutside",
|
|
"latitude": 1000.0,
|
|
"longitude": 1000.0,
|
|
}
|
|
with pytest.raises(
|
|
ValueError, # match="Latitude '1000' and/ or longitude `1000` out of valid range."
|
|
):
|
|
config_eos.merge_settings_from_dict(settings)
|
|
|
|
|
|
# ------------------------------------------------
|
|
# Irradiance caclulation
|
|
# ------------------------------------------------
|
|
|
|
|
|
def test_irridiance_estimate_from_cloud_cover(weather_provider):
|
|
"""Test cloud cover to irradiance estimation."""
|
|
cloud_cover_data = pd.Series(
|
|
data=[20, 50, 80], index=pd.date_range("2023-10-22", periods=3, freq="h")
|
|
)
|
|
|
|
ghi, dni, dhi = weather_provider.estimate_irradiance_from_cloud_cover(
|
|
50.0, 10.0, cloud_cover_data
|
|
)
|
|
|
|
assert ghi == [0, 0, 0]
|
|
assert dhi == [0, 0, 0]
|
|
assert dni == [0, 0, 0]
|
|
|
|
|
|
# ------------------------------------------------
|
|
# ClearOutside
|
|
# ------------------------------------------------
|
|
|
|
|
|
@patch("requests.get")
|
|
def test_request_forecast(mock_get, weather_provider, sample_clearout_1_html, config_eos):
|
|
"""Test fetching forecast from ClearOutside."""
|
|
# Mock response object
|
|
mock_response = Mock()
|
|
mock_response.status_code = 200
|
|
mock_response.content = sample_clearout_1_html
|
|
mock_get.return_value = mock_response
|
|
|
|
# Preset, as this is usually done by update()
|
|
config_eos.update()
|
|
|
|
# Test function
|
|
response = weather_provider._request_forecast()
|
|
|
|
assert response.status_code == 200
|
|
assert response.content == sample_clearout_1_html
|
|
|
|
|
|
@patch("requests.get")
|
|
def test_update_data(mock_get, weather_provider, sample_clearout_1_html, sample_clearout_1_data):
|
|
# Mock response object
|
|
mock_response = Mock()
|
|
mock_response.status_code = 200
|
|
mock_response.content = sample_clearout_1_html
|
|
mock_get.return_value = mock_response
|
|
|
|
expected_start = to_datetime("2024-10-26 00:00:00", in_timezone="Europe/Berlin")
|
|
expected_end = to_datetime("2024-10-28 00:00:00", in_timezone="Europe/Berlin")
|
|
expected_keep = to_datetime("2024-10-24 00:00:00", in_timezone="Europe/Berlin")
|
|
|
|
# Call the method
|
|
ems_eos = get_ems()
|
|
ems_eos.set_start_datetime(expected_start)
|
|
weather_provider.update_data()
|
|
|
|
# Check for correct prediction time window
|
|
assert weather_provider.config.prediction_hours == 48
|
|
assert weather_provider.config.prediction_historic_hours == 48
|
|
assert compare_datetimes(weather_provider.start_datetime, expected_start).equal
|
|
assert compare_datetimes(weather_provider.end_datetime, expected_end).equal
|
|
assert compare_datetimes(weather_provider.keep_datetime, expected_keep).equal
|
|
|
|
# Verify the data
|
|
assert len(weather_provider) == 165 # 6 days, 24 hours per day - 7th day 21 hours
|
|
|
|
# Check that specific values match the expected output
|
|
# for i, record in enumerate(weather_data.records):
|
|
# # Compare datetime and specific values
|
|
# assert record.datetime == sample_clearout_1_data.records[i].datetime
|
|
# assert record.data['total_clouds'] == sample_clearout_1_data.records[i].data['total_clouds']
|
|
# # Check additional weather attributes as necessary
|
|
|
|
|
|
@pytest.mark.skip(reason="Test fixture to be improved")
|
|
@patch("requests.get")
|
|
def test_cache_forecast(mock_get, weather_provider, sample_clearout_1_html, cache_store):
|
|
"""Test that ClearOutside forecast data is cached with TTL.
|
|
|
|
This can not be tested with mock_get. Mock objects are not pickable and therefor can not be
|
|
cached to a file. Keep it for documentation.
|
|
"""
|
|
# Mock response object
|
|
mock_response = Mock()
|
|
mock_response.status_code = 200
|
|
mock_response.content = sample_clearout_1_html
|
|
mock_get.return_value = mock_response
|
|
|
|
cache_store.clear(clear_all=True)
|
|
|
|
weather_provider.update_data()
|
|
mock_get.assert_called_once()
|
|
forecast_data_first = weather_provider.to_json()
|
|
|
|
weather_provider.update_data()
|
|
forecast_data_second = weather_provider.to_json()
|
|
# Verify that cache returns the same object without calling the method again
|
|
assert forecast_data_first == forecast_data_second
|
|
# A mock object is not pickable and therefor can not be chached to file
|
|
assert mock_get.call_count == 2
|
|
|
|
|
|
# ------------------------------------------------
|
|
# Development ClearOutside
|
|
# ------------------------------------------------
|
|
|
|
|
|
@pytest.mark.skip(reason="For development only")
|
|
@patch("requests.get")
|
|
def test_development_forecast_data(mock_get, weather_provider, sample_clearout_1_html):
|
|
# Mock response object
|
|
mock_response = Mock()
|
|
mock_response.status_code = 200
|
|
mock_response.content = sample_clearout_1_html
|
|
mock_get.return_value = mock_response
|
|
|
|
# Fill the instance
|
|
weather_provider.update_data(force_enable=True)
|
|
|
|
with open(FILE_TESTDATA_WEATHERCLEAROUTSIDE_1_DATA, "w") as f_out:
|
|
f_out.write(weather_provider.to_json())
|
|
|
|
|
|
@pytest.mark.skip(reason="For development only")
|
|
def test_clearoutsides_development_scraper(weather_provider, sample_clearout_1_html):
|
|
"""Test scraping from ClearOutside."""
|
|
soup = BeautifulSoup(sample_clearout_1_html, "html.parser")
|
|
|
|
# Sample was created for the loacation
|
|
lat = 50.0
|
|
lon = 10.0
|
|
|
|
# Find generation data
|
|
p_generated = soup.find("h2", string=lambda text: text and text.startswith("Generated:"))
|
|
assert p_generated is not None
|
|
|
|
# Extract forecast start and end dates
|
|
forecast_pattern = r"Forecast: (\d{2}/\d{2}/\d{2}) to (\d{2}/\d{2}/\d{2})"
|
|
forecast_match = re.search(forecast_pattern, p_generated.get_text())
|
|
if forecast_match:
|
|
forecast_start_date = forecast_match.group(1)
|
|
forecast_end_date = forecast_match.group(2)
|
|
else:
|
|
assert False
|
|
assert forecast_start_date == "26/10/24"
|
|
assert forecast_end_date == "01/11/24"
|
|
|
|
# Extract timezone offset
|
|
timezone_pattern = r"Timezone: UTC([+-]\d+)\.(\d+)"
|
|
timezone_match = re.search(timezone_pattern, p_generated.get_text())
|
|
if timezone_match:
|
|
hours = int(timezone_match.group(1))
|
|
assert hours == 2
|
|
# Convert the decimal part to minutes (e.g., .50 -> 30 minutes)
|
|
minutes = int(timezone_match.group(2)) * 6 # Multiply by 6 to convert to minutes
|
|
assert minutes == 0
|
|
|
|
# Create the timezone object using timedelta for the offset
|
|
forecast_timezone = timezone(timedelta(hours=hours, minutes=minutes))
|
|
else:
|
|
assert False
|
|
|
|
forecast_start_datetime = to_datetime(
|
|
forecast_start_date, in_timezone=forecast_timezone, to_naiv=False, to_maxtime=False
|
|
)
|
|
assert forecast_start_datetime == datetime(2024, 10, 26, 0, 0)
|
|
|
|
# Find all paragraphs with id 'day_<x>'. There should be seven.
|
|
p_days = soup.find_all(id=re.compile(r"day_[0-9]"))
|
|
assert len(p_days) == 7
|
|
p_day = p_days[0]
|
|
|
|
# Within day_x paragraph find the details labels
|
|
p_detail_labels = p_day.find_all(class_="fc_detail_label")
|
|
detail_names = [p.get_text() for p in p_detail_labels]
|
|
|
|
assert detail_names == [
|
|
"Total Clouds (% Sky Obscured)",
|
|
"Low Clouds (% Sky Obscured)",
|
|
"Medium Clouds (% Sky Obscured)",
|
|
"High Clouds (% Sky Obscured)",
|
|
"ISS Passover",
|
|
"Visibility (miles)",
|
|
"Fog (%)",
|
|
"Precipitation Type",
|
|
"Precipitation Probability (%)",
|
|
"Precipitation Amount (mm)",
|
|
"Wind Speed/Direction (mph)",
|
|
"Chance of Frost",
|
|
"Temperature (°C)",
|
|
"Feels Like (°C)",
|
|
"Dew Point (°C)",
|
|
"Relative Humidity (%)",
|
|
"Pressure (mb)",
|
|
"Ozone (du)",
|
|
]
|
|
|
|
# Find all the paragraphs that are associated to the details.
|
|
# Beware there is one ul paragraph before that is not associated to a detail
|
|
p_detail_tables = p_day.find_all("ul")
|
|
assert len(p_detail_tables) == len(detail_names) + 1
|
|
p_detail_tables.pop(0)
|
|
|
|
# Create clearout data
|
|
clearout_data = {}
|
|
# Add data values
|
|
for i, detail_name in enumerate(detail_names):
|
|
p_detail_values = p_detail_tables[i].find_all("li")
|
|
detail_data = []
|
|
for p_detail_value in p_detail_values:
|
|
if (
|
|
detail_name in ("Precipitation Type", "Chance of Frost")
|
|
and hasattr(p_detail_value, "title")
|
|
and p_detail_value.title
|
|
):
|
|
value_str = p_detail_value.title.string
|
|
else:
|
|
value_str = p_detail_value.get_text()
|
|
try:
|
|
value = float(value_str)
|
|
except ValueError:
|
|
value = value_str
|
|
detail_data.append(value)
|
|
assert len(detail_data) == 24
|
|
clearout_data[detail_name] = detail_data
|
|
|
|
assert clearout_data["Temperature (°C)"] == [
|
|
14.0,
|
|
14.0,
|
|
13.0,
|
|
12.0,
|
|
11.0,
|
|
11.0,
|
|
10.0,
|
|
10.0,
|
|
9.0,
|
|
9.0,
|
|
9.0,
|
|
9.0,
|
|
9.0,
|
|
10.0,
|
|
9.0,
|
|
9.0,
|
|
10.0,
|
|
11.0,
|
|
13.0,
|
|
14.0,
|
|
15.0,
|
|
16.0,
|
|
16.0,
|
|
16.0,
|
|
]
|
|
assert clearout_data["Relative Humidity (%)"] == [
|
|
59.0,
|
|
68.0,
|
|
75.0,
|
|
81.0,
|
|
84.0,
|
|
85.0,
|
|
85.0,
|
|
91.0,
|
|
91.0,
|
|
93.0,
|
|
93.0,
|
|
93.0,
|
|
93.0,
|
|
93.0,
|
|
95.0,
|
|
95.0,
|
|
93.0,
|
|
87.0,
|
|
81.0,
|
|
76.0,
|
|
70.0,
|
|
66.0,
|
|
66.0,
|
|
69.0,
|
|
]
|
|
assert clearout_data["Wind Speed/Direction (mph)"] == [
|
|
7.0,
|
|
6.0,
|
|
4.0,
|
|
4.0,
|
|
4.0,
|
|
4.0,
|
|
4.0,
|
|
4.0,
|
|
3.0,
|
|
3.0,
|
|
3.0,
|
|
2.0,
|
|
1.0,
|
|
1.0,
|
|
1.0,
|
|
2.0,
|
|
2.0,
|
|
2.0,
|
|
4.0,
|
|
5.0,
|
|
6.0,
|
|
6.0,
|
|
5.0,
|
|
5.0,
|
|
]
|
|
|
|
# Add datetimes of the scrapped data
|
|
clearout_data["DateTime"] = [forecast_start_datetime + timedelta(hours=i) for i in range(24)]
|
|
detail_names.append("DateTime")
|
|
|
|
assert len(clearout_data["DateTime"]) == 24
|
|
assert clearout_data["DateTime"][0] == to_datetime(
|
|
"2024-10-26 00:00:00", in_timezone=forecast_timezone
|
|
)
|
|
assert clearout_data["DateTime"][23] == to_datetime(
|
|
"2024-10-26 23:00:00", in_timezone=forecast_timezone
|
|
)
|
|
|
|
# Converting the cloud cover into Global Horizontal Irradiance (GHI) with a PVLib method
|
|
offset = 35 # The default
|
|
offset_fraction = offset / 100.0 # Adjust percentage to scaling factor
|
|
cloud_cover = pd.Series(clearout_data["Total Clouds (% Sky Obscured)"])
|
|
|
|
# Convert datetime list to a pandas DatetimeIndex
|
|
cloud_cover_times = pd.DatetimeIndex(clearout_data["DateTime"])
|
|
|
|
# Create a location object
|
|
location = pvlib.location.Location(latitude=lat, longitude=lon)
|
|
|
|
# Get solar position and clear-sky GHI using the Ineichen model
|
|
solpos = location.get_solarposition(cloud_cover_times)
|
|
clear_sky = location.get_clearsky(cloud_cover_times, model="ineichen")
|
|
|
|
# Convert cloud cover percentage to a scaling factor
|
|
cloud_cover_fraction = np.array(cloud_cover) / 100.0
|
|
|
|
# Calculate adjusted GHI with proportional offset adjustment
|
|
adjusted_ghi = clear_sky["ghi"] * (
|
|
offset_fraction + (1 - offset_fraction) * (1 - cloud_cover_fraction)
|
|
)
|
|
adjusted_ghi.fillna(0.0, inplace=True)
|
|
|
|
# Apply DISC model to estimate Direct Normal Irradiance (DNI) from adjusted GHI
|
|
disc_output = pvlib.irradiance.disc(adjusted_ghi, solpos["zenith"], cloud_cover_times)
|
|
adjusted_dni = disc_output["dni"]
|
|
adjusted_dni.fillna(0.0, inplace=True)
|
|
|
|
# Calculate Diffuse Horizontal Irradiance (DHI) as DHI = GHI - DNI * cos(zenith)
|
|
zenith_rad = np.radians(solpos["zenith"])
|
|
adjusted_dhi = adjusted_ghi - adjusted_dni * np.cos(zenith_rad)
|
|
adjusted_dhi.fillna(0.0, inplace=True)
|
|
|
|
# Add GHI, DNI, DHI to clearout data
|
|
clearout_data["Global Horizontal Irradiance (W/m2)"] = adjusted_ghi.to_list()
|
|
detail_names.append("Global Horizontal Irradiance (W/m2)")
|
|
clearout_data["Direct Normal Irradiance (W/m2)"] = adjusted_dni.to_list()
|
|
detail_names.append("Direct Normal Irradiance (W/m2)")
|
|
clearout_data["Diffuse Horizontal Irradiance (W/m2)"] = adjusted_dhi.to_list()
|
|
detail_names.append("Diffuse Horizontal Irradiance (W/m2)")
|
|
|
|
assert clearout_data["Global Horizontal Irradiance (W/m2)"] == [
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
24.291000436601216,
|
|
85.88494154645998,
|
|
136.09269403109946,
|
|
139.26925350542064,
|
|
146.7174434892616,
|
|
149.0167479382964,
|
|
138.97458866666065,
|
|
103.47132353697396,
|
|
46.81279774519421,
|
|
0.12972168074047014,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
]
|
|
assert clearout_data["Direct Normal Irradiance (W/m2)"] == [
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
10.19687368654253,
|
|
0.0,
|
|
0.0,
|
|
2.9434862632289804,
|
|
9.621272744657047,
|
|
9.384995789935898,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
]
|
|
assert clearout_data["Diffuse Horizontal Irradiance (W/m2)"] == [
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
24.291000436601216,
|
|
85.88494154645998,
|
|
132.32210426501337,
|
|
139.26925350542064,
|
|
146.7174434892616,
|
|
147.721968406295,
|
|
135.32240392326145,
|
|
100.82522311704261,
|
|
46.81279774519421,
|
|
0.12972168074047014,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
]
|
|
|
|
# Preciptable Water (PWAT) with a PVLib method
|
|
clearout_data["Preciptable Water (cm)"] = pvlib.atmosphere.gueymard94_pw(
|
|
pd.Series(data=clearout_data["Temperature (°C)"]),
|
|
pd.Series(data=clearout_data["Relative Humidity (%)"]),
|
|
).to_list()
|
|
detail_names.append("Preciptable Water (cm)")
|
|
|
|
assert clearout_data["Preciptable Water (cm)"] == [
|
|
1.5345406562673334,
|
|
1.7686231292572652,
|
|
1.8354895631381385,
|
|
1.8651290310892348,
|
|
1.8197998755611786,
|
|
1.8414641597940502,
|
|
1.7325709431177607,
|
|
1.8548700685143087,
|
|
1.7453005409540279,
|
|
1.783658794601369,
|
|
1.783658794601369,
|
|
1.783658794601369,
|
|
1.783658794601369,
|
|
1.8956364436464912,
|
|
1.8220170482487101,
|
|
1.8220170482487101,
|
|
1.8956364436464912,
|
|
1.8847927282597918,
|
|
1.9823287281891897,
|
|
1.9766964385816497,
|
|
1.9346943880237457,
|
|
1.9381315133101413,
|
|
1.9381315133101413,
|
|
2.026228400278784,
|
|
]
|