EOS/src/akkudoktoreos/class_akku.py
Dominique Lasserre 2f5f844018
Migrate from Flask to FastAPI (#163)
* Migrate from Flask to FastAPI

 * FastAPI migration:
    - Use pydantic model classes as input parameters to the
      data/calculation classes.
    - Interface field names changed to constructor parameter names (for
      simplicity only during transition, should be updated in a followup
      PR).
    - Add basic interface requirements (e.g. some values > 0, etc.).
 * Update tests for new data format.
 * Python requirement down to 3.9 (TypeGuard no longer needed)
 * Makefile: Add helpful targets (e.g. development server with reload)

* Move API doc from README to pydantic model classes (swagger)

 * Link to swagger.io with own openapi.yml.
 * Commit openapi.json and check with pytest for changes so the
   documentation is always up-to-date.

* Streamline docker

* FastAPI: Run startup action on dev server

 * Fix config for /strompreis, endpoint still broken however.

* test_openapi: Compare against docs/.../openapi.json

* Move fastapi to server/ submodule

 * See #187 for new repository structure.
2024-11-15 22:27:25 +01:00

271 lines
10 KiB
Python

from typing import Optional
import numpy as np
from pydantic import BaseModel, Field
def max_ladeleistung_w_field(default=None):
return Field(
default,
gt=0,
description="An integer representing the charging power of the battery in watts.",
)
def start_soc_prozent_field(description: str):
return Field(0, ge=0, le=100, description=description)
class BaseAkkuParameters(BaseModel):
kapazitaet_wh: int = Field(
gt=0, description="An integer representing the capacity of the battery in watt-hours."
)
lade_effizienz: float = Field(
0.88, gt=0, le=1, description="A float representing the charging efficiency of the battery."
)
entlade_effizienz: float = Field(0.88, gt=0, le=1)
max_ladeleistung_w: Optional[float] = max_ladeleistung_w_field()
start_soc_prozent: int = start_soc_prozent_field(
"An integer representing the state of charge of the battery at the **start** of the current hour (not the current state)."
)
min_soc_prozent: int = Field(
0,
ge=0,
le=100,
description="An integer representing the minimum state of charge (SOC) of the battery in percentage.",
)
max_soc_prozent: int = Field(100, ge=0, le=100)
class PVAkkuParameters(BaseAkkuParameters):
max_ladeleistung_w: Optional[float] = max_ladeleistung_w_field(5000)
class EAutoParameters(BaseAkkuParameters):
entlade_effizienz: float = 1.0
start_soc_prozent: int = start_soc_prozent_field(
"An integer representing the current state of charge (SOC) of the battery in percentage."
)
class PVAkku:
def __init__(self, parameters: BaseAkkuParameters, hours: int = 24):
# Battery capacity in Wh
self.kapazitaet_wh = parameters.kapazitaet_wh
# Initial state of charge in Wh
self.start_soc_prozent = parameters.start_soc_prozent
self.soc_wh = (parameters.start_soc_prozent / 100) * parameters.kapazitaet_wh
self.hours = hours
self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1)
# Charge and discharge efficiency
self.lade_effizienz = parameters.lade_effizienz
self.entlade_effizienz = parameters.entlade_effizienz
self.max_ladeleistung_w = (
parameters.max_ladeleistung_w if parameters.max_ladeleistung_w else self.kapazitaet_wh
)
# Only assign for storage battery
self.min_soc_prozent = (
parameters.min_soc_prozent if isinstance(parameters, PVAkkuParameters) else 0
)
self.max_soc_prozent = parameters.max_soc_prozent
# Calculate min and max SoC in Wh
self.min_soc_wh = (self.min_soc_prozent / 100) * self.kapazitaet_wh
self.max_soc_wh = (self.max_soc_prozent / 100) * self.kapazitaet_wh
def to_dict(self):
return {
"kapazitaet_wh": self.kapazitaet_wh,
"start_soc_prozent": self.start_soc_prozent,
"soc_wh": self.soc_wh,
"hours": self.hours,
"discharge_array": self.discharge_array.tolist(), # Convert np.array to list
"charge_array": self.charge_array.tolist(),
"lade_effizienz": self.lade_effizienz,
"entlade_effizienz": self.entlade_effizienz,
"max_ladeleistung_w": self.max_ladeleistung_w,
}
@classmethod
def from_dict(cls, data):
# Create a new object with basic data
obj = cls(
kapazitaet_wh=data["kapazitaet_wh"],
hours=data["hours"],
lade_effizienz=data["lade_effizienz"],
entlade_effizienz=data["entlade_effizienz"],
max_ladeleistung_w=data["max_ladeleistung_w"],
start_soc_prozent=data["start_soc_prozent"],
)
# Set arrays
obj.discharge_array = np.array(data["discharge_array"])
obj.charge_array = np.array(data["charge_array"])
obj.soc_wh = data[
"soc_wh"
] # Set current state of charge, which may differ from start_soc_prozent
return obj
def reset(self):
self.soc_wh = (self.start_soc_prozent / 100) * self.kapazitaet_wh
# Ensure soc_wh is within min and max limits
self.soc_wh = min(max(self.soc_wh, self.min_soc_wh), self.max_soc_wh)
self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1)
def set_discharge_per_hour(self, discharge_array):
assert len(discharge_array) == self.hours
self.discharge_array = np.array(discharge_array)
def set_charge_per_hour(self, charge_array):
assert len(charge_array) == self.hours
self.charge_array = np.array(charge_array)
def set_charge_allowed_for_hour(self, charge, hour):
assert hour < self.hours
self.charge_array[hour] = charge
def ladezustand_in_prozent(self):
return (self.soc_wh / self.kapazitaet_wh) * 100
def energie_abgeben(self, wh, hour):
if self.discharge_array[hour] == 0:
return 0.0, 0.0 # No energy discharge and no losses
# Calculate the maximum energy that can be discharged considering min_soc and efficiency
max_possible_discharge_wh = (self.soc_wh - self.min_soc_wh) * self.entlade_effizienz
max_possible_discharge_wh = max(max_possible_discharge_wh, 0.0) # Ensure non-negative
# Consider the maximum discharge power of the battery
max_abgebbar_wh = min(max_possible_discharge_wh, self.max_ladeleistung_w)
# The actually discharged energy cannot exceed requested energy or maximum discharge
tatsaechlich_abgegeben_wh = min(wh, max_abgebbar_wh)
# Calculate the actual amount withdrawn from the battery (before efficiency loss)
if self.entlade_effizienz > 0:
tatsaechliche_entnahme_wh = tatsaechlich_abgegeben_wh / self.entlade_effizienz
else:
tatsaechliche_entnahme_wh = 0.0
# Update the state of charge considering the actual withdrawal
self.soc_wh -= tatsaechliche_entnahme_wh
# Ensure soc_wh does not go below min_soc_wh
self.soc_wh = max(self.soc_wh, self.min_soc_wh)
# Calculate losses due to efficiency
verluste_wh = tatsaechliche_entnahme_wh - tatsaechlich_abgegeben_wh
# Return the actually discharged energy and the losses
return tatsaechlich_abgegeben_wh, verluste_wh
def energie_laden(self, wh, hour, relative_power=0.0):
if hour is not None and self.charge_array[hour] == 0:
return 0, 0 # Charging not allowed in this hour
if relative_power > 0.0:
wh = self.max_ladeleistung_w * relative_power
# If no value for wh is given, use the maximum charging power
wh = wh if wh is not None else self.max_ladeleistung_w
# Calculate the maximum energy that can be charged considering max_soc and efficiency
if self.lade_effizienz > 0:
max_possible_charge_wh = (self.max_soc_wh - self.soc_wh) / self.lade_effizienz
else:
max_possible_charge_wh = 0.0
max_possible_charge_wh = max(max_possible_charge_wh, 0.0) # Ensure non-negative
# The actually charged energy cannot exceed requested energy, charging power, or maximum possible charge
effektive_lademenge = min(wh, max_possible_charge_wh)
# Energy actually stored in the battery
geladene_menge = effektive_lademenge * self.lade_effizienz
# Update soc_wh
self.soc_wh += geladene_menge
# Ensure soc_wh does not exceed max_soc_wh
self.soc_wh = min(self.soc_wh, self.max_soc_wh)
# Calculate losses
verluste_wh = effektive_lademenge - geladene_menge
return geladene_menge, verluste_wh
def aktueller_energieinhalt(self):
"""This method returns the current remaining energy considering efficiency.
It accounts for both charging and discharging efficiency.
"""
# Calculate remaining energy considering discharge efficiency
nutzbare_energie = (self.soc_wh - self.min_soc_wh) * self.entlade_effizienz
return max(nutzbare_energie, 0.0)
if __name__ == "__main__":
# Test battery discharge below min_soc
print("Test: Discharge below min_soc")
akku = PVAkku(
kapazitaet_wh=10000,
hours=1,
start_soc_prozent=50,
min_soc_prozent=20,
max_soc_prozent=80,
)
akku.reset()
print(f"Initial SoC: {akku.ladezustand_in_prozent()}%")
# Try to discharge 5000 Wh
abgegeben_wh, verlust_wh = akku.energie_abgeben(5000, 0)
print(f"Energy discharged: {abgegeben_wh} Wh, Losses: {verlust_wh} Wh")
print(f"SoC after discharge: {akku.ladezustand_in_prozent()}%")
print(f"Expected min SoC: {akku.min_soc_prozent}%")
# Test battery charge above max_soc
print("\nTest: Charge above max_soc")
akku = PVAkku(
kapazitaet_wh=10000,
hours=1,
start_soc_prozent=50,
min_soc_prozent=20,
max_soc_prozent=80,
)
akku.reset()
print(f"Initial SoC: {akku.ladezustand_in_prozent()}%")
# Try to charge 5000 Wh
geladen_wh, verlust_wh = akku.energie_laden(5000, 0)
print(f"Energy charged: {geladen_wh} Wh, Losses: {verlust_wh} Wh")
print(f"SoC after charge: {akku.ladezustand_in_prozent()}%")
print(f"Expected max SoC: {akku.max_soc_prozent}%")
# Test charging when battery is at max_soc
print("\nTest: Charging when at max_soc")
akku = PVAkku(
kapazitaet_wh=10000,
hours=1,
start_soc_prozent=80,
min_soc_prozent=20,
max_soc_prozent=80,
)
akku.reset()
print(f"Initial SoC: {akku.ladezustand_in_prozent()}%")
geladen_wh, verlust_wh = akku.energie_laden(5000, 0)
print(f"Energy charged: {geladen_wh} Wh, Losses: {verlust_wh} Wh")
print(f"SoC after charge: {akku.ladezustand_in_prozent()}%")
# Test discharging when battery is at min_soc
print("\nTest: Discharging when at min_soc")
akku = PVAkku(
kapazitaet_wh=10000,
hours=1,
start_soc_prozent=20,
min_soc_prozent=20,
max_soc_prozent=80,
)
akku.reset()
print(f"Initial SoC: {akku.ladezustand_in_prozent()}%")
abgegeben_wh, verlust_wh = akku.energie_abgeben(5000, 0)
print(f"Energy discharged: {abgegeben_wh} Wh, Losses: {verlust_wh} Wh")
print(f"SoC after discharge: {akku.ladezustand_in_prozent()}%")