EOS/tests/test_class_optimize.py
2024-10-22 10:39:10 +02:00

39 lines
1.4 KiB
Python

import json
from pathlib import Path
import pytest
from akkudoktoreos.class_optimize import optimization_problem
from akkudoktoreos.config import output_dir
DIR_TESTDATA = Path(__file__).parent / "testdata"
@pytest.mark.parametrize("fn_in, fn_out", [("optimize_input_1.json", "optimize_result_1.json")])
def test_optimize(fn_in, fn_out):
# Load input and output data
with open(DIR_TESTDATA / fn_in, "r") as f_in:
input_data = json.load(f_in)
with open(DIR_TESTDATA / fn_out, "r") as f_out:
expected_output_data = json.load(f_out)
opt_class = optimization_problem(
prediction_hours=48, strafe=10, optimization_hours=24, fixed_seed=42
)
start_hour = 10
# Call the optimization function
ergebnis = opt_class.optimierung_ems(parameter=input_data, start_hour=start_hour, ngen=3)
# with open("new.json", "w") as f_out:
# json.dump(ergebnis, f_out, indent=4)
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
assert set(ergebnis) == set(expected_output_data)
# The function creates a visualization result PDF as a side-effect.
fp_viz = Path(output_dir) / "visualization_results.pdf"
assert fp_viz.exists()