mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
162 lines
6.9 KiB
Python
162 lines
6.9 KiB
Python
import numpy as np
|
|
|
|
class PVAkku:
|
|
def __init__(self, kapazitaet_wh=None, hours=None, lade_effizienz=0.88, entlade_effizienz=0.88,
|
|
max_ladeleistung_w=None, start_soc_prozent=0, min_soc_prozent=0, max_soc_prozent=100):
|
|
# Battery capacity in Wh
|
|
self.kapazitaet_wh = kapazitaet_wh
|
|
# Initial state of charge in Wh
|
|
self.start_soc_prozent = start_soc_prozent
|
|
self.soc_wh = (start_soc_prozent / 100) * kapazitaet_wh
|
|
self.hours = hours
|
|
self.discharge_array = np.full(self.hours, 1)
|
|
self.charge_array = np.full(self.hours, 1)
|
|
# Charge and discharge efficiency
|
|
self.lade_effizienz = lade_effizienz
|
|
self.entlade_effizienz = entlade_effizienz
|
|
self.max_ladeleistung_w = max_ladeleistung_w if max_ladeleistung_w else self.kapazitaet_wh
|
|
self.min_soc_prozent = min_soc_prozent
|
|
self.max_soc_prozent = max_soc_prozent
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"kapazitaet_wh": self.kapazitaet_wh,
|
|
"start_soc_prozent": self.start_soc_prozent,
|
|
"soc_wh": self.soc_wh,
|
|
"hours": self.hours,
|
|
"discharge_array": self.discharge_array.tolist(), # Convert np.array to list
|
|
"charge_array": self.charge_array.tolist(),
|
|
"lade_effizienz": self.lade_effizienz,
|
|
"entlade_effizienz": self.entlade_effizienz,
|
|
"max_ladeleistung_w": self.max_ladeleistung_w
|
|
}
|
|
|
|
@classmethod
|
|
def from_dict(cls, data):
|
|
# Create a new object with basic data
|
|
obj = cls(
|
|
kapazitaet_wh=data["kapazitaet_wh"],
|
|
hours=data["hours"],
|
|
lade_effizienz=data["lade_effizienz"],
|
|
entlade_effizienz=data["entlade_effizienz"],
|
|
max_ladeleistung_w=data["max_ladeleistung_w"],
|
|
start_soc_prozent=data["start_soc_prozent"]
|
|
)
|
|
# Set arrays
|
|
obj.discharge_array = np.array(data["discharge_array"])
|
|
obj.charge_array = np.array(data["charge_array"])
|
|
obj.soc_wh = data["soc_wh"] # Set current state of charge, which may differ from start_soc_prozent
|
|
|
|
return obj
|
|
|
|
def reset(self):
|
|
self.soc_wh = (self.start_soc_prozent / 100) * self.kapazitaet_wh
|
|
self.discharge_array = np.full(self.hours, 1)
|
|
self.charge_array = np.full(self.hours, 1)
|
|
|
|
def set_discharge_per_hour(self, discharge_array):
|
|
assert len(discharge_array) == self.hours
|
|
self.discharge_array = np.array(discharge_array)
|
|
|
|
def set_charge_per_hour(self, charge_array):
|
|
assert len(charge_array) == self.hours
|
|
self.charge_array = np.array(charge_array)
|
|
|
|
def ladezustand_in_prozent(self):
|
|
return (self.soc_wh / self.kapazitaet_wh) * 100
|
|
|
|
def energie_abgeben(self, wh, hour):
|
|
if self.discharge_array[hour] == 0:
|
|
return 0.0, 0.0 # No energy discharge and no losses
|
|
|
|
# Calculate the maximum discharge amount considering discharge efficiency
|
|
max_abgebbar_wh = self.soc_wh * self.entlade_effizienz
|
|
|
|
# Consider the maximum discharge power of the battery
|
|
max_abgebbar_wh = min(max_abgebbar_wh, self.max_ladeleistung_w)
|
|
|
|
# The actually discharged energy cannot exceed requested energy or maximum discharge
|
|
tatsaechlich_abgegeben_wh = min(wh, max_abgebbar_wh)
|
|
|
|
# Calculate the actual amount withdrawn from the battery (before efficiency loss)
|
|
tatsaechliche_entnahme_wh = tatsaechlich_abgegeben_wh / self.entlade_effizienz
|
|
|
|
# Update the state of charge considering the actual withdrawal
|
|
self.soc_wh -= tatsaechliche_entnahme_wh
|
|
|
|
# Calculate losses due to efficiency
|
|
verluste_wh = tatsaechliche_entnahme_wh - tatsaechlich_abgegeben_wh
|
|
|
|
# Return the actually discharged energy and the losses
|
|
return tatsaechlich_abgegeben_wh, verluste_wh
|
|
|
|
def energie_laden(self, wh, hour):
|
|
if hour is not None and self.charge_array[hour] == 0:
|
|
return 0, 0 # Charging not allowed in this hour
|
|
|
|
# If no value for wh is given, use the maximum charging power
|
|
wh = wh if wh is not None else self.max_ladeleistung_w
|
|
|
|
# Relative to the maximum charging power (between 0 and 1)
|
|
relative_ladeleistung = self.charge_array[hour]
|
|
effektive_ladeleistung = relative_ladeleistung * self.max_ladeleistung_w
|
|
|
|
# Calculate the actual charging amount considering charging efficiency
|
|
effektive_lademenge = min(wh, effektive_ladeleistung)
|
|
|
|
# Update the state of charge without exceeding capacity
|
|
geladene_menge_ohne_verlust = min(self.kapazitaet_wh - self.soc_wh, effektive_lademenge)
|
|
|
|
geladene_menge = geladene_menge_ohne_verlust * self.lade_effizienz
|
|
|
|
self.soc_wh += geladene_menge
|
|
|
|
verluste_wh = geladene_menge_ohne_verlust * (1.0 - self.lade_effizienz)
|
|
|
|
return geladene_menge, verluste_wh
|
|
|
|
def aktueller_energieinhalt(self):
|
|
"""
|
|
This method returns the current remaining energy considering efficiency.
|
|
It accounts for both charging and discharging efficiency.
|
|
"""
|
|
# Calculate remaining energy considering discharge efficiency
|
|
nutzbare_energie = self.soc_wh * self.entlade_effizienz
|
|
return nutzbare_energie
|
|
|
|
# def energie_laden(self, wh, hour):
|
|
# if hour is not None and self.charge_array[hour] == 0:
|
|
# return 0, 0 # Charging not allowed in this hour
|
|
|
|
# # If no value for wh is given, use the maximum charging power
|
|
# wh = wh if wh is not None else self.max_ladeleistung_w
|
|
|
|
# # Calculate the actual charging amount considering charging efficiency
|
|
# effective_charging_amount = min(wh, self.max_ladeleistung_w)
|
|
|
|
# # Update the state of charge without exceeding capacity
|
|
# charged_amount_without_loss = min(self.kapazitaet_wh - self.soc_wh, effective_charging_amount)
|
|
|
|
# charged_amount = charged_amount_without_loss * self.lade_effizienz
|
|
|
|
# self.soc_wh += charged_amount
|
|
|
|
# losses_wh = charged_amount_without_loss * (1.0 - self.lade_effizienz)
|
|
|
|
# return charged_amount, losses_wh
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Example of using the class
|
|
akku = PVAkku(10000) # A battery with 10,000 Wh capacity
|
|
print(f"Initial state of charge: {akku.ladezustand_in_prozent()}%")
|
|
|
|
akku.energie_laden(5000)
|
|
print(f"State of charge after charging: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh")
|
|
|
|
abgegebene_energie_wh = akku.energie_abgeben(3000)
|
|
print(f"Discharged energy: {abgegebene_energie_wh} Wh, State of charge afterwards: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh")
|
|
|
|
akku.energie_laden(6000)
|
|
print(f"State of charge after further charging: {akku.ladezustand_in_prozent()}%, Current energy content: {akku.aktueller_energieinhalt()} Wh")
|