EOS/modules/visualize.py
NormannK c2254dc5ed Update visualize.py
initial clean up, translations
2024-09-30 07:54:19 +02:00

194 lines
8.1 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from datetime import datetime
from modules.class_sommerzeit import * # Ensure this matches the actual import path
from modules.class_load_container import Gesamtlast # Ensure this matches the actual import path
# Set the backend for matplotlib to Agg
import matplotlib
matplotlib.use('Agg')
def visualisiere_ergebnisse(gesamtlast, pv_forecast, strompreise, ergebnisse, discharge_hours, laden_moeglich, temperature, start_hour, prediction_hours, einspeiseverguetung_euro_pro_wh, filename="visualization_results.pdf", extra_data=None):
#####################
# 24-hour visualization
#####################
with PdfPages(filename) as pdf:
# Load and PV generation
plt.figure(figsize=(14, 14))
plt.subplot(3, 3, 1)
hours = np.arange(0, prediction_hours)
gesamtlast_array = np.array(gesamtlast)
# Plot individual loads
plt.plot(hours, gesamtlast_array, label='Load (Wh)', marker='o')
# Calculate and plot total load
plt.plot(hours, gesamtlast_array, label='Total Load (Wh)', marker='o', linewidth=2, linestyle='--')
plt.xlabel('Hour')
plt.ylabel('Load (Wh)')
plt.title('Load Profiles')
plt.grid(True)
plt.legend()
# Electricity prices
hours_p = np.arange(0, len(strompreise))
plt.subplot(3, 2, 2)
plt.plot(hours_p, strompreise, label='Electricity Price (€/Wh)', color='purple', marker='s')
plt.title('Electricity Prices')
plt.xlabel('Hour of the Day')
plt.ylabel('Price (€/Wh)')
plt.legend()
plt.grid(True)
# PV forecast
plt.subplot(3, 2, 3)
plt.plot(hours, pv_forecast, label='PV Generation (Wh)', marker='x')
plt.title('PV Forecast')
plt.xlabel('Hour of the Day')
plt.ylabel('Wh')
plt.legend()
plt.grid(True)
# Feed-in remuneration
plt.subplot(3, 2, 4)
plt.plot(hours, einspeiseverguetung_euro_pro_wh, label='Remuneration (€/Wh)', marker='x')
plt.title('Remuneration')
plt.xlabel('Hour of the Day')
plt.ylabel('€/Wh')
plt.legend()
plt.grid(True)
# Temperature forecast
plt.subplot(3, 2, 5)
plt.title('Temperature Forecast (°C)')
plt.plot(hours, temperature, label='Temperature (°C)', marker='x')
plt.xlabel('Hour of the Day')
plt.ylabel('°C')
plt.legend()
plt.grid(True)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
#####################
# Start hour visualization
#####################
plt.figure(figsize=(14, 10))
if ist_dst_wechsel(datetime.datetime.now()):
hours = np.arange(start_hour, prediction_hours - 1)
else:
hours = np.arange(start_hour, prediction_hours)
# Energy flow, grid feed-in, and grid consumption
plt.subplot(3, 2, 1)
plt.plot(hours, ergebnisse['Last_Wh_pro_Stunde'], label='Load (Wh)', marker='o')
plt.plot(hours, ergebnisse['Haushaltsgeraet_wh_pro_stunde'], label='Household Device (Wh)', marker='o')
plt.plot(hours, ergebnisse['Netzeinspeisung_Wh_pro_Stunde'], label='Grid Feed-in (Wh)', marker='x')
plt.plot(hours, ergebnisse['Netzbezug_Wh_pro_Stunde'], label='Grid Consumption (Wh)', marker='^')
plt.plot(hours, ergebnisse['Verluste_Pro_Stunde'], label='Losses (Wh)', marker='^')
plt.title('Energy Flow per Hour')
plt.xlabel('Hour')
plt.ylabel('Energy (Wh)')
plt.legend()
# State of charge for batteries
plt.subplot(3, 2, 2)
plt.plot(hours, ergebnisse['akku_soc_pro_stunde'], label='PV Battery (%)', marker='x')
plt.plot(hours, ergebnisse['E-Auto_SoC_pro_Stunde'], label='E-Car Battery (%)', marker='x')
plt.legend(loc='upper left', bbox_to_anchor=(1, 1)) # Place legend outside the plot
plt.grid(True, which='both', axis='x') # Grid for every hour
ax1 = plt.subplot(3, 2, 3)
for hour, value in enumerate(discharge_hours):
ax1.axvspan(hour, hour + 1, color='red', ymax=value, alpha=0.3, label='Discharge Possibility' if hour == 0 else "")
for hour, value in enumerate(laden_moeglich):
ax1.axvspan(hour, hour + 1, color='green', ymax=value, alpha=0.3, label='Charging Possibility' if hour == 0 else "")
ax1.legend(loc='upper left')
ax1.set_xlim(0, prediction_hours)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
# Financial overview
fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots
total_costs = ergebnisse['Gesamtkosten_Euro']
total_revenue = ergebnisse['Gesamteinnahmen_Euro']
total_balance = ergebnisse['Gesamtbilanz_Euro']
losses = ergebnisse['Gesamt_Verluste']
# Costs and revenues per hour on the first axis (axs[0])
axs[0].plot(hours, ergebnisse['Kosten_Euro_pro_Stunde'], label='Costs (Euro)', marker='o', color='red')
axs[0].plot(hours, ergebnisse['Einnahmen_Euro_pro_Stunde'], label='Revenue (Euro)', marker='x', color='green')
axs[0].set_title('Financial Balance per Hour')
axs[0].set_xlabel('Hour')
axs[0].set_ylabel('Euro')
axs[0].legend()
axs[0].grid(True)
# Summary of finances on the second axis (axs[1])
labels = ['Total Costs [€]', 'Total Revenue [€]', 'Total Balance [€]']
values = [total_costs, total_revenue, total_balance]
colors = ['red' if value > 0 else 'green' for value in values]
axs[1].bar(labels, values, color=colors)
axs[1].set_title('Financial Overview')
axs[1].set_ylabel('Euro')
# Second axis (ax2) for losses, shared with axs[1]
ax2 = axs[1].twinx()
ax2.bar('Total Losses', losses, color='blue')
ax2.set_ylabel('Losses [Wh]', color='blue')
ax2.tick_params(axis='y', labelcolor='blue')
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
# Additional data visualization if provided
if extra_data is not None:
plt.figure(figsize=(14, 10))
plt.subplot(1, 2, 1)
f1 = np.array(extra_data["verluste"])
f2 = np.array(extra_data["bilanz"])
n1 = np.array(extra_data["nebenbedingung"])
scatter = plt.scatter(f1, f2, c=n1, cmap='viridis')
# Add color legend
plt.colorbar(scatter, label='Constraint')
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
plt.figure(figsize=(14, 10))
filtered_losses = np.array([v for v, n in zip(extra_data["verluste"], extra_data["nebenbedingung"]) if n < 0.01])
filtered_balance = np.array([b for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"]) if n < 0.01])
best_loss = min(filtered_losses)
worst_loss = max(filtered_losses)
best_balance = min(filtered_balance)
worst_balance = max(filtered_balance)
data = [filtered_losses, filtered_balance]
labels = ['Losses', 'Balance']
# Create plots
fig, axs = plt.subplots(1, 2, figsize=(10, 6), sharey=False) # Two subplots, separate y-axes
# First violin plot for losses
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
axs[0].set_title('Losses')
axs[0].set_xticklabels(['Losses'])
# Second violin plot for balance
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
axs[1].set_title('Balance')
axs[1].set_xticklabels(['Balance'])
# Fine-tuning
plt.tight_layout()
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the figure