Files
EOS/src/akkudoktoreos/prediction/loadakkudoktor.py
Bobby Noelte bd38b3c5ef
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
fix: logging, prediction update, multiple bugs (#584)
* Fix logging configuration issues that made logging stop operation. Switch to Loguru
  logging (from Python logging). Enable console and file logging with different log levels.
  Add logging documentation.

* Fix logging configuration and EOS configuration out of sync. Added tracking support
  for nested value updates of Pydantic models. This used to update the logging configuration
  when the EOS configurationm for logging is changed. Should keep logging config and EOS
  config in sync as long as all changes to the EOS logging configuration are done by
  set_nested_value(), which is the case for the REST API.

* Fix energy management task looping endlessly after the second update when trying to update
  the last_update datetime.

* Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance.

* Fix usage of model classes instead of model instances in nested value access when evaluation
  the value type that is associated to each key.

* Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider.

* Fix documentation qirks and add EOS Connect to integrations.

* Support deprecated fields in configuration in documentation generation and EOSdash.

* Enhance EOSdash demo to show BrightSky humidity data (that is often missing)

* Update documentation reference to German EOS installation videos.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-06-10 22:00:28 +02:00

132 lines
5.9 KiB
Python

"""Retrieves load forecast data from Akkudoktor load profiles."""
from typing import Optional
import numpy as np
from loguru import logger
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
class LoadAkkudoktorCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file."""
loadakkudoktor_year_energy: Optional[float] = Field(
default=None, description="Yearly energy consumption (kWh).", examples=[40421]
)
class LoadAkkudoktor(LoadProvider):
"""Fetch Load forecast data from Akkudoktor load profiles."""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the LoadAkkudoktor provider."""
return "LoadAkkudoktor"
def _calculate_adjustment(self, data_year_energy: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Calculate weekday and week end adjustment from total load measurement data.
Returns:
weekday_adjust (np.ndarray): hourly adjustment for Monday to Friday.
weekend_adjust (np.ndarray): hourly adjustment for Saturday and Sunday.
"""
weekday_adjust = np.zeros(24)
weekday_adjust_weight = np.zeros(24)
weekend_adjust = np.zeros(24)
weekend_adjust_weight = np.zeros(24)
if self.measurement.max_datetime is None:
# No measurements - return 0 adjustment
return (weekday_adjust, weekday_adjust)
# compare predictions with real measurement - try to use last 7 days
compare_start = self.measurement.max_datetime - to_duration("7 days")
if compare_datetimes(compare_start, self.measurement.min_datetime).lt:
# Not enough measurements for 7 days - use what is available
compare_start = self.measurement.min_datetime
compare_end = self.measurement.max_datetime
compare_interval = to_duration("1 hour")
load_total_array = self.measurement.load_total(
start_datetime=compare_start,
end_datetime=compare_end,
interval=compare_interval,
)
compare_dt = compare_start
for i in range(len(load_total_array)):
load_total = load_total_array[i]
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[compare_dt.day_of_year - 1, :, compare_dt.hour]
weight = 1 / ((compare_end - compare_dt).days + 1)
if compare_dt.day_of_week < 5:
weekday_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekday_adjust_weight[compare_dt.hour] += weight
else:
weekend_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekend_adjust_weight[compare_dt.hour] += weight
compare_dt += compare_interval
# Calculate mean
for i in range(24):
if weekday_adjust_weight[i] > 0:
weekday_adjust[i] = weekday_adjust[i] / weekday_adjust_weight[i]
if weekend_adjust_weight[i] > 0:
weekend_adjust[i] = weekend_adjust[i] / weekend_adjust_weight[i]
return (weekday_adjust, weekend_adjust)
def load_data(self) -> np.ndarray:
"""Loads data from the Akkudoktor load file."""
load_file = self.config.package_root_path.joinpath("data/load_profiles.npz")
data_year_energy = None
try:
file_data = np.load(load_file)
profile_data = np.array(
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
)
# Calculate values in W by relative profile data and yearly consumption given in kWh
data_year_energy = (
profile_data * self.config.load.provider_settings.loadakkudoktor_year_energy * 1000
)
except FileNotFoundError:
error_msg = f"Error: File {load_file} not found."
logger.error(error_msg)
raise FileNotFoundError(error_msg)
except Exception as e:
error_msg = f"An error occurred while loading data: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
return data_year_energy
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Adds the load means and standard deviations."""
data_year_energy = self.load_data()
weekday_adjust, weekend_adjust = self._calculate_adjustment(data_year_energy)
# We provide prediction starting at start of day, to be compatible to old system.
# End date for prediction is prediction hours from now.
date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
while compare_datetimes(date, end_date).lt:
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[date.day_of_year - 1, :, date.hour]
values = {
"load_mean": hourly_stats[0],
"load_std": hourly_stats[1],
}
if date.day_of_week < 5:
# Monday to Friday (0..4)
value_adjusted = hourly_stats[0] + weekday_adjust[date.hour]
else:
# Saturday, Sunday (5, 6)
value_adjusted = hourly_stats[0] + weekend_adjust[date.hour]
values["load_mean_adjusted"] = max(0, value_adjusted)
self.update_value(date, values)
date += to_duration("1 hour")
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)