Files
EOS/src/akkudoktoreos/prediction/weatherabc.py
Bobby Noelte bd38b3c5ef
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
fix: logging, prediction update, multiple bugs (#584)
* Fix logging configuration issues that made logging stop operation. Switch to Loguru
  logging (from Python logging). Enable console and file logging with different log levels.
  Add logging documentation.

* Fix logging configuration and EOS configuration out of sync. Added tracking support
  for nested value updates of Pydantic models. This used to update the logging configuration
  when the EOS configurationm for logging is changed. Should keep logging config and EOS
  config in sync as long as all changes to the EOS logging configuration are done by
  set_nested_value(), which is the case for the REST API.

* Fix energy management task looping endlessly after the second update when trying to update
  the last_update datetime.

* Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance.

* Fix usage of model classes instead of model instances in nested value access when evaluation
  the value type that is associated to each key.

* Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider.

* Fix documentation qirks and add EOS Connect to integrations.

* Support deprecated fields in configuration in documentation generation and EOSdash.

* Enhance EOSdash demo to show BrightSky humidity data (that is often missing)

* Update documentation reference to German EOS installation videos.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-06-10 22:00:28 +02:00

196 lines
9.5 KiB
Python

"""Abstract and base classes for weather predictions.
Notes:
- Supported weather sources can be expanded by adding new fetch methods within the
WeatherForecast class.
- Ensure appropriate API keys or configurations are set up if required by external data sources.
"""
from abc import abstractmethod
from typing import List, Optional
import numpy as np
import pandas as pd
import pvlib
from pydantic import Field
from akkudoktoreos.prediction.predictionabc import PredictionProvider, PredictionRecord
class WeatherDataRecord(PredictionRecord):
"""Represents a weather data record containing various weather attributes at a specific datetime.
Attributes:
date_time (Optional[AwareDatetime]): The datetime of the record.
total_clouds (Optional[float]): Total cloud cover as a percentage of the sky obscured.
low_clouds (Optional[float]): Cloud cover in the lower atmosphere (% sky obscured).
medium_clouds (Optional[float]): Cloud cover in the middle atmosphere (% sky obscured).
high_clouds (Optional[float]): Cloud cover in the upper atmosphere (% sky obscured).
visibility (Optional[float]): Horizontal visibility in meters.
fog (Optional[float]): Fog cover percentage.
precip_type (Optional[str]): Type of precipitation (e.g., "rain", "snow").
precip_prob (Optional[float]): Probability of precipitation as a percentage.
precip_amt (Optional[float]): Precipitation amount in millimeters.
preciptable_water (Optional[float]): Precipitable water in centimeters.
wind_speed (Optional[float]): Wind speed in kilometers per hour.
wind_direction (Optional[float]): Wind direction in degrees (0-360°).
frost_chance (Optional[str]): Probability of frost.
temp_air (Optional[float]): Air temperature in degrees Celsius.
feels_like (Optional[float]): Feels-like temperature in degrees Celsius.
dew_point (Optional[float]): Dew point in degrees Celsius.
relative_humidity (Optional[float]): Relative humidity in percentage.
pressure (Optional[float]): Atmospheric pressure in millibars.
ozone (Optional[float]): Ozone concentration in Dobson units.
ghi (Optional[float]): Global Horizontal Irradiance in watts per square meter (W/m²).
dni (Optional[float]): Direct Normal Irradiance in watts per square meter (W/m²).
dhi (Optional[float]): Diffuse Horizontal Irradiance in watts per square meter (W/m²).
"""
weather_total_clouds: Optional[float] = Field(
default=None, description="Total Clouds (% Sky Obscured)"
)
weather_low_clouds: Optional[float] = Field(
default=None, description="Low Clouds (% Sky Obscured)"
)
weather_medium_clouds: Optional[float] = Field(
default=None, description="Medium Clouds (% Sky Obscured)"
)
weather_high_clouds: Optional[float] = Field(
default=None, description="High Clouds (% Sky Obscured)"
)
weather_visibility: Optional[float] = Field(default=None, description="Visibility (m)")
weather_fog: Optional[float] = Field(default=None, description="Fog (%)")
weather_precip_type: Optional[str] = Field(default=None, description="Precipitation Type")
weather_precip_prob: Optional[float] = Field(
default=None, description="Precipitation Probability (%)"
)
weather_precip_amt: Optional[float] = Field(
default=None, description="Precipitation Amount (mm)"
)
weather_preciptable_water: Optional[float] = Field(
default=None, description="Precipitable Water (cm)"
)
weather_wind_speed: Optional[float] = Field(default=None, description="Wind Speed (kmph)")
weather_wind_direction: Optional[float] = Field(default=None, description="Wind Direction (°)")
weather_frost_chance: Optional[str] = Field(default=None, description="Chance of Frost")
weather_temp_air: Optional[float] = Field(default=None, description="Temperature (°C)")
weather_feels_like: Optional[float] = Field(default=None, description="Feels Like (°C)")
weather_dew_point: Optional[float] = Field(default=None, description="Dew Point (°C)")
weather_relative_humidity: Optional[float] = Field(
default=None, description="Relative Humidity (%)"
)
weather_pressure: Optional[float] = Field(default=None, description="Pressure (mb)")
weather_ozone: Optional[float] = Field(default=None, description="Ozone (du)")
weather_ghi: Optional[float] = Field(
default=None, description="Global Horizontal Irradiance (W/m2)"
)
weather_dni: Optional[float] = Field(
default=None, description="Direct Normal Irradiance (W/m2)"
)
weather_dhi: Optional[float] = Field(
default=None, description="Diffuse Horizontal Irradiance (W/m2)"
)
class WeatherProvider(PredictionProvider):
"""Abstract base class for weather providers.
WeatherProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables:
provider (str): Prediction provider for weather.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`.
"""
# overload
records: List[WeatherDataRecord] = Field(
default_factory=list, description="List of WeatherDataRecord records"
)
@classmethod
@abstractmethod
def provider_id(cls) -> str:
return "WeatherProvider"
def enabled(self) -> bool:
return self.provider_id() == self.config.weather.provider
@classmethod
def estimate_irradiance_from_cloud_cover(
cls, lat: float, lon: float, cloud_cover: pd.Series, offset: int = 35
) -> tuple:
"""Estimates irradiance values (GHI, DNI, DHI) based on cloud cover.
This method estimates solar irradiance in several steps:
1. **Clear Sky GHI Calculation**: Determines the Global Horizontal Irradiance (GHI) under clear sky conditions using the Ineichen model and climatological turbidity data.
2. **Cloudy Sky GHI Estimation**: Adjusts the clear sky GHI based on the provided cloud cover percentage to estimate cloudy sky GHI.
3. **Direct Normal Irradiance (DNI) Estimation**: Uses the DISC model to estimate the DNI from the adjusted GHI.
4. **Diffuse Horizontal Irradiance (DHI) Calculation**: Computes DHI from the estimated GHI and DNI values.
Args:
lat (float): Latitude of the location for irradiance estimation.
lon (float): Longitude of the location for irradiance estimation.
cloud_cover (pd.Series): Series of cloud cover values (0-100%) indexed by datetime.
offset (Optional[sint]): Baseline for GHI adjustment as a percentage (default is 35).
Returns:
tuple: Lists of estimated irradiance values in the order of GHI, DNI, and DHI.
Note:
This method is based on the implementation from PVLib and is adapted from
https://github.com/davidusb-geek/emhass/blob/master/src/emhass/forecast.py (MIT License).
"""
# Adjust offset percentage to scaling factor
offset_fraction = offset / 100.0
# Get cloud cover datetimes
cloud_cover_times = cloud_cover.index
# Create a location object
location = pvlib.location.Location(latitude=lat, longitude=lon)
# Get solar position and clear-sky GHI using the Ineichen model
solpos = location.get_solarposition(cloud_cover_times)
clear_sky = location.get_clearsky(cloud_cover_times, model="ineichen")
# Convert cloud cover percentage to a scaling factor
cloud_cover_fraction = np.array(cloud_cover) / 100.0
# Calculate adjusted GHI with proportional offset adjustment
adjusted_ghi = clear_sky["ghi"] * (
offset_fraction + (1 - offset_fraction) * (1 - cloud_cover_fraction)
)
adjusted_ghi.fillna(0.0, inplace=True)
# Apply DISC model to estimate Direct Normal Irradiance (DNI) from adjusted GHI
disc_output = pvlib.irradiance.disc(adjusted_ghi, solpos["zenith"], cloud_cover_times)
adjusted_dni = disc_output["dni"]
adjusted_dni.fillna(0.0, inplace=True)
# Calculate Diffuse Horizontal Irradiance (DHI) as DHI = GHI - DNI * cos(zenith)
zenith_rad = np.radians(solpos["zenith"])
adjusted_dhi = adjusted_ghi - adjusted_dni * np.cos(zenith_rad)
adjusted_dhi.fillna(0.0, inplace=True)
# Return GHI, DNI, DHI lists
ghi = adjusted_ghi.to_list()
dni = adjusted_dni.to_list()
dhi = adjusted_dhi.to_list()
return ghi, dni, dhi
@classmethod
def estimate_preciptable_water(
cls, temperature: pd.Series, relative_humidity: pd.Series
) -> pd.Series:
return pvlib.atmosphere.gueymard94_pw(temperature, relative_humidity)