EOS/src/akkudoktoreos/prediction/loadakkudoktor.py
Bobby Noelte d4e31d556a
Add Documentation 2 (#334)
Add documentation that covers:

- configuration
- prediction

Add Python scripts that support automatic documentation generation for
configuration data defined with pydantic.

Adapt EOS configuration to provide more methods for REST API and
automatic documentation generation.

Adapt REST API to allow for EOS configuration file load and save.
Sort REST API on generation of openapi markdown for docs.

Move logutil to core/logging to allow configuration of logging by standard config.

Make Akkudoktor predictions always start extraction of prediction data at start of day.
Previously extraction started at actual hour. This is to support the code that assumes
prediction data to start at start of day.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-01-05 14:41:07 +01:00

131 lines
5.9 KiB
Python

"""Retrieves load forecast data from Akkudoktor load profiles."""
from typing import Optional
import numpy as np
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadabc import LoadProvider
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
logger = get_logger(__name__)
class LoadAkkudoktorCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file."""
loadakkudoktor_year_energy: Optional[float] = Field(
default=None, description="Yearly energy consumption (kWh)."
)
class LoadAkkudoktor(LoadProvider):
"""Fetch Load forecast data from Akkudoktor load profiles."""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the LoadAkkudoktor provider."""
return "LoadAkkudoktor"
def _calculate_adjustment(self, data_year_energy: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Calculate weekday and week end adjustment from total load measurement data.
Returns:
weekday_adjust (np.ndarray): hourly adjustment for Monday to Friday.
weekend_adjust (np.ndarray): hourly adjustment for Saturday and Sunday.
"""
weekday_adjust = np.zeros(24)
weekday_adjust_weight = np.zeros(24)
weekend_adjust = np.zeros(24)
weekend_adjust_weight = np.zeros(24)
if self.measurement.max_datetime is None:
# No measurements - return 0 adjustment
return (weekday_adjust, weekday_adjust)
# compare predictions with real measurement - try to use last 7 days
compare_start = self.measurement.max_datetime - to_duration("7 days")
if compare_datetimes(compare_start, self.measurement.min_datetime).lt:
# Not enough measurements for 7 days - use what is available
compare_start = self.measurement.min_datetime
compare_end = self.measurement.max_datetime
compare_interval = to_duration("1 hour")
load_total_array = self.measurement.load_total(
start_datetime=compare_start,
end_datetime=compare_end,
interval=compare_interval,
)
compare_dt = compare_start
for i in range(len(load_total_array)):
load_total = load_total_array[i]
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[compare_dt.day_of_year - 1, :, compare_dt.hour]
weight = 1 / ((compare_end - compare_dt).days + 1)
if compare_dt.day_of_week < 5:
weekday_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekday_adjust_weight[compare_dt.hour] += weight
else:
weekend_adjust[compare_dt.hour] += (load_total - hourly_stats[0]) * weight
weekend_adjust_weight[compare_dt.hour] += weight
compare_dt += compare_interval
# Calculate mean
for i in range(24):
if weekday_adjust_weight[i] > 0:
weekday_adjust[i] = weekday_adjust[i] / weekday_adjust_weight[i]
if weekend_adjust_weight[i] > 0:
weekend_adjust[i] = weekend_adjust[i] / weekend_adjust_weight[i]
return (weekday_adjust, weekend_adjust)
def load_data(self) -> np.ndarray:
"""Loads data from the Akkudoktor load file."""
load_file = self.config.package_root_path.joinpath("data/load_profiles.npz")
data_year_energy = None
try:
file_data = np.load(load_file)
profile_data = np.array(
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
)
# Calculate values in W by relative profile data and yearly consumption given in kWh
data_year_energy = profile_data * self.config.loadakkudoktor_year_energy * 1000
except FileNotFoundError:
error_msg = f"Error: File {load_file} not found."
logger.error(error_msg)
raise FileNotFoundError(error_msg)
except Exception as e:
error_msg = f"An error occurred while loading data: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
return data_year_energy
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Adds the load means and standard deviations."""
data_year_energy = self.load_data()
weekday_adjust, weekend_adjust = self._calculate_adjustment(data_year_energy)
# We provide prediction starting at start of day, to be compatible to old system.
# End date for prediction is prediction hours from now.
date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction_hours)
while compare_datetimes(date, end_date).lt:
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
hourly_stats = data_year_energy[date.day_of_year - 1, :, date.hour]
values = {
"load_mean": hourly_stats[0],
"load_std": hourly_stats[1],
}
if date.day_of_week < 5:
# Monday to Friday (0..4)
values["load_mean_adjusted"] = hourly_stats[0] + weekday_adjust[date.hour]
else:
# Saturday, Sunday (5, 6)
values["load_mean_adjusted"] = hourly_stats[0] + weekend_adjust[date.hour]
self.update_value(date, values)
date += to_duration("1 hour")
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.timezone)