EOS/flask_server.py

364 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
from flask import Flask, jsonify, request, redirect, url_for
import numpy as np
from modules.class_load import *
from modules.class_ems import *
from modules.class_pv_forecast import *
from modules.class_akku import *
from modules.class_strompreis import *
from modules.class_heatpump import *
from modules.class_load_container import *
from modules.class_sommerzeit import *
from modules.class_soc_calc import *
from modules.visualize import *
#from modules.class_battery_soc_predictor import *
from modules.class_load_corrector import *
import os
from flask import Flask, send_from_directory
from pprint import pprint
import matplotlib
matplotlib.use('Agg') # Setzt das Backend auf Agg
import matplotlib.pyplot as plt
import string
from datetime import datetime, timedelta
from deap import base, creator, tools, algorithms
from modules.class_optimize import *
import numpy as np
import random
import os
from config import *
app = Flask(__name__)
opt_class = optimization_problem(prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours)
# @app.route('/last_correction', methods=['GET'])
# def flask_last_correction():
# if request.method == 'GET':
# year_energy = float(request.args.get("year_energy"))
# date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date())
# ###############
# # Load Forecast
# ###############
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
# #leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
# leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0] # Nur Erwartungswert!
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
# # ###############
# # # WP
# # ##############
# # leistung_wp = wp.simulate_24h(temperature_forecast)
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp)
# last = gesamtlast.gesamtlast_berechnen()
# print(last)
# #print(specific_date_prices)
# return jsonify(last.tolist())
@app.route('/soc', methods=['GET'])
def flask_soc():
# MariaDB Verbindungsdetails
config = db_config
# Parameter festlegen
voltage_high_threshold = 55.4 # 100% SoC
voltage_low_threshold = 46.5 # 0% SoC
current_low_threshold = 2 # Niedriger Strom für beide Zustände
gap = 30 # Zeitlücke in Minuten zum Gruppieren von Maxima/Minima
bat_capacity = 33 * 1000 / 48
# Zeitpunkt X definieren
zeitpunkt_x = (datetime.now() - timedelta(weeks=3)).strftime('%Y-%m-%d %H:%M:%S')
# BatteryDataProcessor instanziieren und verwenden
processor = BatteryDataProcessor(config, voltage_high_threshold, voltage_low_threshold, current_low_threshold, gap,bat_capacity)
processor.connect_db()
processor.fetch_data(zeitpunkt_x)
processor.process_data()
last_points_100_df, last_points_0_df = processor.find_soc_points()
soc_df, integration_results = processor.calculate_resetting_soc(last_points_100_df, last_points_0_df)
#soh_df = processor.calculate_soh(integration_results)
processor.update_database_with_soc(soc_df)
#processor.plot_data(last_points_100_df, last_points_0_df, soc_df)
processor.disconnect_db()
return jsonify("Done")
@app.route('/strompreis', methods=['GET'])
def flask_strompreis():
date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date())
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date_now+"&end="+date+"", prediction_hours=prediction_hours)
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
#print(specific_date_prices)
return jsonify(specific_date_prices.tolist())
# Die letzten X gemessenen Daten + gesamtlast Simple oder eine andere Schätung als Input
# Daraus wird dann eine neuen Lastprognose erstellt welche korrigiert ist.
# Input:
@app.route('/gesamtlast', methods=['POST'])
def flask_gesamtlast():
# Daten aus dem JSON-Body abrufen
data = request.get_json()
# Extract year_energy and prediction_hours from the request JSON
year_energy = float(data.get("year_energy"))
prediction_hours = int(data.get("hours", 48)) # Default to 48 hours if not specified
# Measured data as JSON
measured_data_json = data.get("measured_data")
# Convert JSON data into a Pandas DataFrame
measured_data = pd.DataFrame(measured_data_json)
# Make sure the 'time' column is in datetime format
measured_data['time'] = pd.to_datetime(measured_data['time'])
# Check if the datetime has timezone info, if not, assume it's local time
if measured_data['time'].dt.tz is None:
# Treat it as local time and localize it
measured_data['time'] = measured_data['time'].dt.tz_localize('Europe/Berlin')
else:
# Convert the time to local timezone (e.g., 'Europe/Berlin')
measured_data['time'] = measured_data['time'].dt.tz_convert('Europe/Berlin')
# Remove timezone info after conversion
measured_data['time'] = measured_data['time'].dt.tz_localize(None)
# Instantiate LoadForecast and generate forecast data
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
# Generate forecast data based on the measured data time range
forecast_list = []
for single_date in pd.date_range(measured_data['time'].min().date(), measured_data['time'].max().date()):
date_str = single_date.strftime('%Y-%m-%d')
daily_forecast = lf.get_daily_stats(date_str)
mean_values = daily_forecast[0]
hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
forecast_list.append(daily_forecast_df)
# Concatenate all daily forecasts into a single DataFrame
predicted_data = pd.concat(forecast_list, ignore_index=True)
#print(predicted_data)
# Create LoadPredictionAdjuster instance
adjuster = LoadPredictionAdjuster(measured_data, predicted_data, lf)
# Calculate weighted mean and adjust predictions
adjuster.calculate_weighted_mean()
adjuster.adjust_predictions()
# Predict the next x hours
future_predictions = adjuster.predict_next_hours(prediction_hours)
# Extract the household power predictions
leistung_haushalt = future_predictions['Adjusted Pred'].values
# Instantiate Gesamtlast and add household power predictions
gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
# ###############
# # WP (optional)
# ###############
# leistung_wp = wp.simulate_24h(temperature_forecast)
# gesamtlast.hinzufuegen("Heatpump", leistung_wp)
# Calculate the total load
last = gesamtlast.gesamtlast_berechnen()
# Return the calculated load as JSON
return jsonify(last.tolist())
# @app.route('/gesamtlast', methods=['GET'])
# def flask_gesamtlast():
# if request.method == 'GET':
# year_energy = float(request.args.get("year_energy"))
# prediction_hours = int(request.args.get("hours", 48)) # Default to 24 hours if not specified
# date_now = datetime.now()
# end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S')
# ###############
# # Load Forecast
# ###############
# # Instantiate LastEstimator and get measured data
# estimator = LastEstimator()
# start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d') # Example: last 60 days
# end_date = date_now.strftime('%Y-%m-%d') # Current date
# last_df = estimator.get_last(start_date, end_date)
# selected_columns = last_df[['timestamp', 'Last']]
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
# cleaned_data = selected_columns.dropna()
# # Instantiate LoadForecast
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
# # Generate forecast data
# forecast_list = []
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
# date_str = single_date.strftime('%Y-%m-%d')
# daily_forecast = lf.get_daily_stats(date_str)
# mean_values = daily_forecast[0]
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
# forecast_list.append(daily_forecast_df)
# forecast_df = pd.concat(forecast_list, ignore_index=True)
# # Create LoadPredictionAdjuster instance
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
# adjuster.calculate_weighted_mean()
# adjuster.adjust_predictions()
# # Predict the next hours
# future_predictions = adjuster.predict_next_hours(prediction_hours)
# leistung_haushalt = future_predictions['Adjusted Pred'].values
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
# # ###############
# # # WP
# # ##############
# # leistung_wp = wp.simulate_24h(temperature_forecast)
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp)
# last = gesamtlast.gesamtlast_berechnen()
# print(last)
# return jsonify(last.tolist())
@app.route('/gesamtlast_simple', methods=['GET'])
def flask_gesamtlast_simple():
if request.method == 'GET':
year_energy = float(request.args.get("year_energy"))
date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date())
###############
# Load Forecast
###############
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0] # Nur Erwartungswert!
gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
# ###############
# # WP
# ##############
# leistung_wp = wp.simulate_24h(temperature_forecast)
# gesamtlast.hinzufuegen("Heatpump", leistung_wp)
last = gesamtlast.gesamtlast_berechnen()
print(last)
#print(specific_date_prices)
return jsonify(last.tolist())
@app.route('/pvforecast', methods=['GET'])
def flask_pvprognose():
if request.method == 'GET':
url = request.args.get("url")
ac_power_measurement = request.args.get("ac_power_measurement")
date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date())
###############
# PV Forecast
###############
PVforecast = PVForecast(prediction_hours = prediction_hours, url=url)
#print("PVPOWER",parameter['pvpowernow'])
if isfloat(ac_power_measurement):
PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(ac_power_measurement) )
#PVforecast.print_ac_power_and_measurement()
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
#print(specific_date_prices)
ret = {"temperature":temperature_forecast.tolist(),"pvpower":pv_forecast.tolist()}
return jsonify(ret)
@app.route('/optimize', methods=['POST'])
def flask_optimize():
if request.method == 'POST':
parameter = request.json
# Erforderliche Parameter prüfen
erforderliche_parameter = [ 'preis_euro_pro_wh_akku','strompreis_euro_pro_wh', "gesamtlast",'pv_akku_cap', "einspeiseverguetung_euro_pro_wh", 'pv_forecast','temperature_forecast', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","haushaltsgeraet_dauer","haushaltsgeraet_wh"]
for p in erforderliche_parameter:
if p not in parameter:
return jsonify({"error": f"Fehlender Parameter: {p}"}), 400
# Simulation durchführen
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=datetime.now().hour) # , startdate = datetime.now().date() - timedelta(days = 1)
return jsonify(ergebnis)
@app.route('/visualisierungsergebnisse.pdf')
def get_pdf():
return send_from_directory('', 'visualisierungsergebnisse.pdf')
@app.route("/site-map")
def site_map():
def print_links(links):
### This is lazy. Use templates
content = "<h1>Valid routes</h1><ul>"
for link in links:
content += f"<li><a href='{link}'>{link}</li>"
content = content + "<ul>"
return content
def has_no_empty_params(rule):
defaults = rule.defaults if rule.defaults is not None else ()
arguments = rule.arguments if rule.arguments is not None else ()
return len(defaults) >= len(arguments)
links = []
for rule in app.url_map.iter_rules():
if "GET" in rule.methods and has_no_empty_params(rule):
url = url_for(rule.endpoint, **(rule.defaults or {}))
links.append(url)
return print_links(sorted(links))
@app.route('/')
def root():
return redirect("/site-map", code=302)
if __name__ == '__main__':
try:
host= os.getenv("FLASK_RUN_HOST", "0.0.0.0")
port = os.getenv("FLASK_RUN_PORT", 5000)
app.run(debug=True, host=host, port=port)
except:
print(f"Coud not bind to host {host}:{port}, set FLASK_RUN_HOST and/or FLASK_RUN_PORT.")
# PV Forecast:
# object {
# pvpower: array[48]
# temperature: array[48]
# }