EOS/tests/test_loadakkudoktor.py
2025-01-24 20:07:21 +01:00

210 lines
5.9 KiB
Python

from unittest.mock import patch
import numpy as np
import pendulum
import pytest
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.measurement.measurement import MeasurementDataRecord, get_measurement
from akkudoktoreos.prediction.loadakkudoktor import (
LoadAkkudoktor,
LoadAkkudoktorCommonSettings,
)
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
@pytest.fixture
def provider(config_eos):
"""Fixture to initialise the LoadAkkudoktor instance."""
settings = {
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"load_name": "Akkudoktor Profile",
"loadakkudoktor_year_energy": "1000",
},
}
}
config_eos.merge_settings_from_dict(settings)
return LoadAkkudoktor()
@pytest.fixture
def measurement_eos():
"""Fixture to initialise the Measurement instance."""
measurement = get_measurement()
load0_mr = 500
load1_mr = 500
dt = to_datetime("2024-01-01T00:00:00")
interval = to_duration("1 hour")
for i in range(25):
measurement.records.append(
MeasurementDataRecord(
date_time=dt,
load0_mr=load0_mr,
load1_mr=load1_mr,
)
)
dt += interval
load0_mr += 50
load1_mr += 50
assert compare_datetimes(measurement.min_datetime, to_datetime("2024-01-01T00:00:00")).equal
assert compare_datetimes(measurement.max_datetime, to_datetime("2024-01-02T00:00:00")).equal
return measurement
@pytest.fixture
def mock_load_profiles_file(tmp_path):
"""Fixture to create a mock load profiles file."""
load_profiles_path = tmp_path / "load_profiles.npz"
np.savez(
load_profiles_path,
yearly_profiles=np.random.rand(365, 24), # Random load profiles
yearly_profiles_std=np.random.rand(365, 24), # Random standard deviation
)
return load_profiles_path
def test_loadakkudoktor_settings_validator():
"""Test the field validator for `loadakkudoktor_year_energy`."""
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234)
assert isinstance(settings.loadakkudoktor_year_energy, float)
assert settings.loadakkudoktor_year_energy == 1234.0
settings = LoadAkkudoktorCommonSettings(loadakkudoktor_year_energy=1234.56)
assert isinstance(settings.loadakkudoktor_year_energy, float)
assert settings.loadakkudoktor_year_energy == 1234.56
def test_loadakkudoktor_provider_id(provider):
"""Test the `provider_id` class method."""
assert provider.provider_id() == "LoadAkkudoktor"
@patch("akkudoktoreos.prediction.loadakkudoktor.np.load")
def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, provider):
"""Test the `load_data` method."""
# Mock numpy load to return data similar to what would be in the file
mock_np_load.return_value = {
"yearly_profiles": np.ones((365, 24)),
"yearly_profiles_std": np.zeros((365, 24)),
}
# Test data loading
data_year_energy = provider.load_data()
assert data_year_energy is not None
assert data_year_energy.shape == (365, 2, 24)
def test_load_data_from_file(provider):
"""Test `load_data` loads data from the profiles file."""
data_year_energy = provider.load_data()
assert data_year_energy is not None
@patch("akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor.load_data")
def test_update_data(mock_load_data, provider):
"""Test the `_update` method."""
mock_load_data.return_value = np.random.rand(365, 2, 24)
# Mock methods for updating values
ems_eos = get_ems()
ems_eos.set_start_datetime(pendulum.datetime(2024, 1, 1))
# Assure there are no prediction records
provider.clear()
assert len(provider) == 0
# Execute the method
provider._update_data()
# Validate that update_value is called
assert len(provider) > 0
def test_calculate_adjustment(provider, measurement_eos):
"""Test `_calculate_adjustment` for various scenarios."""
data_year_energy = np.random.rand(365, 2, 24)
# Call the method and validate results
weekday_adjust, weekend_adjust = provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
assert weekend_adjust.shape == (24,)
data_year_energy = np.zeros((365, 2, 24))
weekday_adjust, weekend_adjust = provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
expected = np.array(
[
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
100.0,
]
)
np.testing.assert_array_equal(weekday_adjust, expected)
assert weekend_adjust.shape == (24,)
expected = np.array(
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
np.testing.assert_array_equal(weekend_adjust, expected)
def test_provider_adjustments_with_mock_data(provider):
"""Test full integration of adjustments with mock data."""
with patch(
"akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor._calculate_adjustment"
) as mock_adjust:
mock_adjust.return_value = (np.zeros(24), np.zeros(24))
# Test execution
provider._update_data()
assert mock_adjust.called