EOS/modules/class_strompreis.py

151 lines
5.5 KiB
Python

import json
from datetime import datetime, timedelta, timezone
import numpy as np
import json, os
from datetime import datetime
import hashlib, requests
class HourlyElectricityPriceForecast:
def __init__(self, source, cache_dir='cache'):
self.cache_dir = cache_dir
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
self.prices = self.load_data(source)
def load_data(self, source):
if source.startswith('http'):
cache_filename = self.get_cache_filename(source)
if os.path.exists(cache_filename):
print("Lade Daten aus dem Cache...")
with open(cache_filename, 'r') as file:
data = json.load(file)
else:
print("Lade Daten von der URL...")
response = requests.get(source)
if response.status_code == 200:
data = response.json()
with open(cache_filename, 'w') as file:
json.dump(data, file)
else:
raise Exception(f"Fehler beim Abrufen der Daten: {response.status_code}")
else:
with open(source, 'r') as file:
data = json.load(file)
return data['values']
def get_cache_filename(self, url):
hash_object = hashlib.sha256(url.encode())
hex_dig = hash_object.hexdigest()
return os.path.join(self.cache_dir, f"cache_{hex_dig}.json")
def get_price_for_date(self, date_str):
"""Gibt alle Preise für das spezifizierte Datum zurück."""
date_prices = [entry["marketpriceEurocentPerKWh"] for entry in self.prices if date_str in entry['start']]
return date_prices
# def get_price_for_hour(self, datetime_str):
# """Gibt den Preis für die spezifizierte Stunde zurück."""
# hour_price = [entry for entry in self.prices if datetime_str in entry['start']]
# return hour_price[0] if hour_price else None
# # Beispiel zur Verwendung der Klasse
# filepath = '/mnt/data/strompreise_akkudokAPI.json' # Pfad zur JSON-Datei
# strompreise = Strompreise(filepath)
# # Preise für ein spezifisches Datum erhalten
# date_str = '2024-02-25'
# prices_for_date = strompreise.get_price_for_date(date_str)
# print(f"Preise für {date_str}: {prices_for_date}")
# # Preis für eine spezifische Stunde erhalten
# datetime_str = '2024-02-25T15:00:00.000Z'
# price_for_hour = strompreise.get_price_for_hour(datetime_str)
# print(f"Preis für {datetime_str}: {price_for_hour}")
# class HourlyElectricityPriceForecast:
# class PriceData:
# def __init__(self, total, energy, tax, starts_at, currency, level):
# self.total = total/1000.0
# self.energy = energy/1000.0
# self.tax = tax/1000.0
# self.starts_at = datetime.strptime(starts_at, '%Y-%m-%dT%H:%M:%S.%f%z')
# self.currency = currency
# self.level = level
# # Getter-Methoden
# def get_total(self):
# return self.total
# def get_energy(self):
# return self.energy
# def get_tax(self):
# return self.tax
# def get_starts_at(self):
# return self.starts_at
# def get_currency(self):
# return self.currency
# def get_level(self):
# return self.level
# def __init__(self, filepath):
# self.filepath = filepath
# self.price_data = []
# self.load_data()
# def get_prices_for_date(self, query_date):
# query_date = datetime.strptime(query_date, '%Y-%m-%d').date()
# prices_for_date = [price.get_total() for price in self.price_data if price.starts_at.date() == query_date]
# return np.array(prices_for_date)
# def get_price_for_datetime(self, query_datetime):
# query_datetime = datetime.strptime(query_datetime, '%Y-%m-%d %H').replace(minute=0, second=0, microsecond=0)
# query_datetime = query_datetime.replace(tzinfo=timezone(timedelta(hours=1)))
# for price in self.price_data:
# #print(price.starts_at.replace(minute=0, second=0, microsecond=0) , " ", query_datetime, " == ",price.starts_at.replace(minute=0, second=0, microsecond=0) == query_datetime)
# if price.starts_at.replace(minute=0, second=0, microsecond=0) == query_datetime:
# return np.array(price)
# return None
# def load_data(self):
# with open(self.filepath, 'r') as file:
# data = json.load(file)
# for item in data['payload']:
# self.price_data.append(self.PriceData(
# total=item['total'],
# energy=item['energy'],
# tax=item['tax'],
# starts_at=item['startsAt'],
# currency=item['currency'],
# level=item['level']
# ))
# def get_price_data(self):
# return self.price_data
# # Beispiel für die Verwendung der Klasse
# if __name__ == '__main__':
# filepath = r'..\test_data\strompreis.json' # Pfad zur JSON-Datei anpassen
# price_forecast = HourlyElectricityPriceForecast(filepath)
# specific_date_prices = price_forecast.get_prices_for_date('2024-02-16') # Datum anpassen
# specific_date_prices = price_forecast.get_price_for_datetime('2024-02-16 12')
# print(specific_date_prices)
# #for price in price_forecast.get_price_data():
# # print(price.get_starts_at(), price.get_total(), price.get_currency())