mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-11 11:56:17 +00:00
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Close stale pull requests/issues / Find Stale issues and PRs (push) Has been cancelled
* Fix logging configuration issues that made logging stop operation. Switch to Loguru logging (from Python logging). Enable console and file logging with different log levels. Add logging documentation. * Fix logging configuration and EOS configuration out of sync. Added tracking support for nested value updates of Pydantic models. This used to update the logging configuration when the EOS configurationm for logging is changed. Should keep logging config and EOS config in sync as long as all changes to the EOS logging configuration are done by set_nested_value(), which is the case for the REST API. * Fix energy management task looping endlessly after the second update when trying to update the last_update datetime. * Fix get_nested_value() to correctly take values from the dicts in a Pydantic model instance. * Fix usage of model classes instead of model instances in nested value access when evaluation the value type that is associated to each key. * Fix illegal json format in prediction documentation for PVForecastAkkudoktor provider. * Fix documentation qirks and add EOS Connect to integrations. * Support deprecated fields in configuration in documentation generation and EOSdash. * Enhance EOSdash demo to show BrightSky humidity data (that is often missing) * Update documentation reference to German EOS installation videos. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
795 lines
29 KiB
Python
795 lines
29 KiB
Python
import json
|
|
import os
|
|
import textwrap
|
|
from collections.abc import Sequence
|
|
from typing import Callable, Optional, Union
|
|
|
|
import matplotlib
|
|
import matplotlib.dates as mdates
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pendulum
|
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
|
|
from akkudoktoreos.core.coreabc import ConfigMixin
|
|
from akkudoktoreos.core.ems import EnergyManagement
|
|
from akkudoktoreos.optimization.genetic import OptimizationParameters
|
|
from akkudoktoreos.utils.datetimeutil import to_datetime
|
|
|
|
matplotlib.use(
|
|
"Agg"
|
|
) # non-interactive backend that can only write to files, backend needed to stay in main thread.
|
|
|
|
|
|
debug_visualize: bool = False
|
|
|
|
|
|
class VisualizationReport(ConfigMixin):
|
|
def __init__(
|
|
self,
|
|
filename: str = "visualization_results.pdf",
|
|
version: str = "0.0.1",
|
|
create_img: bool = True,
|
|
) -> None:
|
|
# Initialize the report with a given filename and empty groups
|
|
self.filename = filename
|
|
self.groups: list[list[Callable[[], None]]] = [] # Store groups of charts
|
|
self.current_group: list[
|
|
Callable[[], None]
|
|
] = [] # Store current group of charts being created
|
|
self.pdf_pages = PdfPages(filename, metadata={}) # Initialize PdfPages without metadata
|
|
self.version = version # overwrite version as test for constant output of pdf for test
|
|
self.current_time = to_datetime(
|
|
as_string="YYYY-MM-DD HH:mm:ss", in_timezone=self.config.general.timezone
|
|
)
|
|
self.create_img = create_img
|
|
|
|
def add_chart_to_group(self, chart_func: Callable[[], None], title: str | None) -> None:
|
|
"""Add a chart function to the current group and save it as a PNG and SVG."""
|
|
self.current_group.append(chart_func)
|
|
if self.create_img and title:
|
|
server_output_dir = self.config.cache.path()
|
|
server_output_dir.mkdir(parents=True, exist_ok=True)
|
|
fig, ax = plt.subplots()
|
|
chart_func()
|
|
plt.tight_layout() # Adjust the layout to ensure titles are not cut off
|
|
sanitized_title = "".join(c if c.isalnum() else "_" for c in title)
|
|
chart_filename_base = os.path.join(server_output_dir, f"chart_{sanitized_title}")
|
|
fig.savefig(f"{chart_filename_base}.svg")
|
|
plt.close(fig)
|
|
|
|
def finalize_group(self) -> None:
|
|
"""Finalize the current group and prepare for a new group."""
|
|
if self.current_group: # Check if current group has charts
|
|
self.groups.append(self.current_group) # Add current group to groups
|
|
else:
|
|
print("Finalizing an empty group!") # Warn if group is empty
|
|
self.current_group = [] # Reset current group for new charts
|
|
|
|
def _initialize_pdf(self) -> None:
|
|
"""Create the output directory if it doesn't exist and initialize the PDF."""
|
|
output_dir = self.config.general.data_output_path
|
|
|
|
# If self.filename is already a valid path, use it; otherwise, combine it with output_dir
|
|
if os.path.isabs(self.filename):
|
|
output_file = self.filename
|
|
else:
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
output_file = os.path.join(output_dir, self.filename)
|
|
|
|
self.pdf_pages = PdfPages(
|
|
output_file, metadata={}
|
|
) # Re-initialize PdfPages without metadata
|
|
|
|
def _save_group_to_pdf(self, group: list[Callable[[], None]]) -> None:
|
|
"""Save a group of charts to the PDF."""
|
|
fig_count = len(group) # Number of charts in the group
|
|
|
|
if fig_count == 0:
|
|
print("Attempted to save an empty group to PDF!")
|
|
return
|
|
|
|
# Check for special charts before creating layout
|
|
special_keywords = {"add_text_page", "add_json_page"}
|
|
for chart_func in group:
|
|
if any(keyword in chart_func.__qualname__ for keyword in special_keywords):
|
|
chart_func() # Special chart functions handle their own rendering
|
|
return
|
|
|
|
# Create layout only if no special charts are detected
|
|
if fig_count == 3:
|
|
fig = plt.figure(figsize=(14, 10))
|
|
ax1 = fig.add_subplot(2, 1, 1)
|
|
ax2 = fig.add_subplot(2, 2, 3)
|
|
ax3 = fig.add_subplot(2, 2, 4)
|
|
axs = [ax1, ax2, ax3]
|
|
else:
|
|
cols = 2 if fig_count > 1 else 1
|
|
rows = (fig_count + 1) // 2
|
|
fig, axs = plt.subplots(rows, cols, figsize=(14, 7 * rows))
|
|
axs = list(np.array(axs).reshape(-1))
|
|
|
|
# Add footer text with current time to each page
|
|
if self.version == "test":
|
|
current_time = "test"
|
|
else:
|
|
current_time = self.current_time
|
|
fig.text(
|
|
0.5,
|
|
0.02,
|
|
f"Generated on: {current_time} with version: {self.version}",
|
|
ha="center",
|
|
va="center",
|
|
fontsize=10,
|
|
)
|
|
|
|
# Render each chart in its corresponding axis
|
|
for idx, chart_func in enumerate(group):
|
|
plt.sca(axs[idx]) # Set current axis
|
|
chart_func() # Render the chart
|
|
|
|
# Save the figure to the PDF and clean up
|
|
for idx in range(fig_count, len(axs)):
|
|
axs[idx].set_visible(False)
|
|
|
|
self.pdf_pages.savefig(fig) # Save the figure to the PDF
|
|
plt.close(fig)
|
|
|
|
def create_line_chart_date(
|
|
self,
|
|
start_date: pendulum.DateTime,
|
|
y_list: list[Union[np.ndarray, list[Optional[float]], list[float]]],
|
|
ylabel: str,
|
|
xlabel: Optional[str] = None,
|
|
title: Optional[str] = None,
|
|
labels: Optional[list[str]] = None,
|
|
markers: Optional[list[str]] = None,
|
|
line_styles: Optional[list[str]] = None,
|
|
x2label: Optional[Union[str, None]] = "Hours Since Start",
|
|
) -> None:
|
|
"""Create a line chart and add it to the current group."""
|
|
|
|
def chart() -> None:
|
|
timestamps = [
|
|
start_date.add(hours=i) for i in range(len(y_list[0]))
|
|
] # 840 timestamps at 1-hour intervals
|
|
|
|
for idx, y_data in enumerate(y_list):
|
|
label = labels[idx] if labels else None # Chart label
|
|
marker = markers[idx] if markers and idx < len(markers) else "o" # Marker style
|
|
line_style = line_styles[idx] if line_styles and idx < len(line_styles) else "-"
|
|
plt.plot(
|
|
timestamps, y_data, label=label, marker=marker, linestyle=line_style
|
|
) # Plot line
|
|
|
|
# Format the time axis
|
|
plt.gca().xaxis.set_major_formatter(
|
|
mdates.DateFormatter("%Y-%m-%d", tz=self.config.general.timezone)
|
|
) # Show date and time
|
|
plt.gca().xaxis.set_major_locator(
|
|
mdates.DayLocator(interval=1, tz=self.config.general.timezone)
|
|
) # Major ticks every day
|
|
plt.gca().xaxis.set_minor_locator(
|
|
mdates.HourLocator(interval=2, tz=self.config.general.timezone)
|
|
)
|
|
# Minor ticks every 6 hours
|
|
plt.gca().xaxis.set_minor_formatter(
|
|
mdates.DateFormatter("%H", tz=self.config.general.timezone)
|
|
)
|
|
# plt.gcf().autofmt_xdate(rotation=45, which="major")
|
|
# Auto-format the x-axis for readability
|
|
|
|
# Move major tick labels further down to avoid collision with minor tick labels
|
|
for plt_label in plt.gca().get_xticklabels(which="major"):
|
|
plt_label.set_y(-0.04)
|
|
|
|
# Add labels, title, and legend
|
|
if xlabel:
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel(ylabel)
|
|
if title:
|
|
plt.title(title)
|
|
if labels:
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# Add vertical line for the current date if within the axis range
|
|
current_time = pendulum.now(self.config.general.timezone)
|
|
if timestamps[0].subtract(hours=2) <= current_time <= timestamps[-1]:
|
|
plt.axvline(current_time, color="r", linestyle="--", label="Now")
|
|
plt.text(current_time, plt.ylim()[1], "Now", color="r", ha="center", va="bottom")
|
|
|
|
# Add a second x-axis on top
|
|
ax1 = plt.gca()
|
|
ax2 = ax1.twiny()
|
|
ax2.set_xlim(ax1.get_xlim()) # Align the second axis with the first
|
|
|
|
# Generate integer hour labels
|
|
hours_since_start = [(t - timestamps[0]).total_seconds() / 3600 for t in timestamps]
|
|
# ax2.set_xticks(timestamps[::48]) # Set ticks every 12 hours
|
|
# ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[::48]])
|
|
# ax2.set_xticks(timestamps[:: len(timestamps) // 24]) # Select 10 evenly spaced ticks
|
|
ax2.set_xticks(timestamps[:: len(timestamps) // 12]) # Select 10 evenly spaced ticks
|
|
# ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[:: len(timestamps) // 24]])
|
|
ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[:: len(timestamps) // 12]])
|
|
if x2label:
|
|
ax2.set_xlabel(x2label)
|
|
|
|
# Ensure ax1 and ax2 are aligned
|
|
# assert ax1.get_xlim() == ax2.get_xlim(), "ax1 and ax2 are not aligned"
|
|
|
|
self.add_chart_to_group(chart, title) # Add chart function to current group
|
|
|
|
def create_line_chart(
|
|
self,
|
|
start_hour: Optional[int],
|
|
y_list: list[Union[np.ndarray, list[Optional[float]], list[float]]],
|
|
title: str,
|
|
xlabel: str,
|
|
ylabel: str,
|
|
labels: Optional[list[str]] = None,
|
|
markers: Optional[list[str]] = None,
|
|
line_styles: Optional[list[str]] = None,
|
|
) -> None:
|
|
"""Create a line chart and add it to the current group."""
|
|
|
|
def chart() -> None:
|
|
nonlocal start_hour # Allow modifying `x` within the nested function
|
|
if start_hour is None:
|
|
start_hour = 0
|
|
first_element = y_list[0]
|
|
x: np.ndarray
|
|
# Case 1: y_list contains np.ndarray elements
|
|
if isinstance(first_element, np.ndarray):
|
|
x = np.arange(
|
|
start_hour, start_hour + len(first_element)
|
|
) # Start at x and extend by ndarray length
|
|
# Case 2: y_list contains float elements (1D list)
|
|
elif isinstance(first_element, float):
|
|
x = np.arange(
|
|
start_hour, start_hour + len(y_list)
|
|
) # Start at x and extend by list length
|
|
# Case 3: y_list is a nested list of floats
|
|
elif isinstance(first_element, list) and all(
|
|
isinstance(i, float) for i in first_element
|
|
):
|
|
max_len = max(len(sublist) for sublist in y_list)
|
|
x = np.arange(
|
|
start_hour, start_hour + max_len
|
|
) # Start at x and extend by max sublist length
|
|
else:
|
|
print(f"Unsupported y_list structure: {type(y_list)}, {y_list}")
|
|
raise TypeError(
|
|
"y_list elements must be np.ndarray, float, or a nested list of floats"
|
|
)
|
|
|
|
for idx, y_data in enumerate(y_list):
|
|
label = labels[idx] if labels else None # Chart label
|
|
marker = markers[idx] if markers and idx < len(markers) else "o" # Marker style
|
|
line_style = (
|
|
line_styles[idx] if line_styles and idx < len(line_styles) else "-"
|
|
) # Line style
|
|
plt.plot(x, y_data, label=label, marker=marker, linestyle=line_style) # Plot line
|
|
|
|
plt.title(title) # Set title
|
|
plt.xlabel(xlabel) # Set x-axis label
|
|
plt.ylabel(ylabel) # Set y-axis label
|
|
if labels:
|
|
plt.legend() # Show legend if labels are provided
|
|
plt.grid(True) # Show grid
|
|
plt.xlim(x[0] - 0.5, x[-1] + 0.5) # Adjust x-limits
|
|
|
|
self.add_chart_to_group(chart, title) # Add chart function to current group
|
|
|
|
def create_scatter_plot(
|
|
self,
|
|
x: np.ndarray,
|
|
y: np.ndarray,
|
|
title: str,
|
|
xlabel: str,
|
|
ylabel: str,
|
|
c: Optional[np.ndarray] = None,
|
|
) -> None:
|
|
"""Create a scatter plot and add it to the current group."""
|
|
|
|
def chart() -> None:
|
|
scatter = plt.scatter(x, y, c=c, cmap="viridis") # Create scatter plot
|
|
plt.title(title) # Set title
|
|
plt.xlabel(xlabel) # Set x-axis label
|
|
plt.ylabel(ylabel) # Set y-axis label
|
|
if c is not None:
|
|
plt.colorbar(scatter, label="Constraint") # Add colorbar if color data is provided
|
|
plt.grid(True) # Show grid
|
|
|
|
self.add_chart_to_group(chart, title) # Add chart function to current group
|
|
|
|
def create_bar_chart(
|
|
self,
|
|
labels: list[str],
|
|
values_list: Sequence[Union[int, float, list[Union[int, float]]]],
|
|
title: str,
|
|
ylabel: str,
|
|
xlabels: Optional[list[str]] = None,
|
|
label_names: Optional[list[str]] = None,
|
|
colors: Optional[list[str]] = None,
|
|
bar_width: float = 0.35,
|
|
bottom: Optional[int] = None,
|
|
) -> None:
|
|
"""Create a bar chart and add it to the current group."""
|
|
|
|
def chart() -> None:
|
|
num_groups = len(values_list) # Number of data groups
|
|
num_bars = len(labels) # Number of bars (categories)
|
|
# Calculate the positions for each bar group on the x-axis
|
|
x = np.arange(num_bars) # x positions for bars
|
|
offset = np.linspace(
|
|
-bar_width * (num_groups - 1) / 2, bar_width * (num_groups - 1) / 2, num_groups
|
|
) # Bar offsets
|
|
for i, values in enumerate(values_list):
|
|
bottom_use = None
|
|
if bottom == i + 1: # Set bottom if specified
|
|
bottom_use = 1
|
|
color = colors[i] if colors and i < len(colors) else None # Bar color
|
|
label_name = label_names[i] if label_names else None # Bar label
|
|
plt.bar(
|
|
x + offset[i],
|
|
values,
|
|
bar_width,
|
|
label=label_name,
|
|
color=color,
|
|
zorder=2,
|
|
alpha=0.6,
|
|
bottom=bottom_use,
|
|
) # Create bar
|
|
if xlabels:
|
|
plt.xticks(x, labels) # Add custom labels to the x-axis
|
|
plt.title(title) # Set title
|
|
plt.ylabel(ylabel) # Set y-axis label
|
|
|
|
if colors and label_names:
|
|
plt.legend() # Show legend if colors are provided
|
|
plt.grid(True, zorder=0) # Show grid in the background
|
|
plt.xlim(-0.5, len(labels) - 0.5) # Set x-axis limits
|
|
|
|
self.add_chart_to_group(chart, title) # Add chart function to current group
|
|
|
|
def create_violin_plot(
|
|
self, data_list: list[np.ndarray], labels: list[str], title: str, xlabel: str, ylabel: str
|
|
) -> None:
|
|
"""Create a violin plot and add it to the current group."""
|
|
|
|
def chart() -> None:
|
|
plt.violinplot(data_list, showmeans=True, showmedians=True) # Create violin plot
|
|
plt.xticks(np.arange(1, len(labels) + 1), labels) # Set x-ticks and labels
|
|
plt.title(title) # Set title
|
|
plt.xlabel(xlabel) # Set x-axis label
|
|
plt.ylabel(ylabel) # Set y-axis label
|
|
plt.grid(True) # Show grid
|
|
|
|
self.add_chart_to_group(chart, title) # Add chart function to current group
|
|
|
|
def add_text_page(self, text: str, title: Optional[str] = None, fontsize: int = 12) -> None:
|
|
"""Add a page with text content to the PDF."""
|
|
|
|
def chart() -> None:
|
|
fig = plt.figure(figsize=(8.5, 11)) # Create a standard page size
|
|
plt.axis("off") # Turn off axes for a clean page
|
|
wrapped_text = textwrap.fill(text, width=80) # Wrap text to fit the page width
|
|
y = 0.95 # Start at the top of the page
|
|
|
|
if title:
|
|
plt.text(0.5, y, title, ha="center", va="top", fontsize=fontsize + 4, weight="bold")
|
|
y -= 0.05 # Add space after the title
|
|
|
|
plt.text(0.5, y, wrapped_text, ha="center", va="top", fontsize=fontsize, wrap=True)
|
|
self.pdf_pages.savefig(fig) # Save the figure as a page in the PDF
|
|
plt.close(fig) # Close the figure to free up memory
|
|
|
|
self.add_chart_to_group(chart, title) # Treat the text page as a "chart" in the group
|
|
|
|
def add_json_page(
|
|
self, json_obj: dict, title: Optional[str] = None, fontsize: int = 12
|
|
) -> None:
|
|
"""Add a page with a formatted JSON object to the PDF.
|
|
|
|
Args:
|
|
json_obj (dict): The JSON object to display.
|
|
title (Optional[str]): An optional title for the page.
|
|
fontsize (int): The font size for the JSON text.
|
|
"""
|
|
|
|
def chart() -> None:
|
|
# Convert JSON object to a formatted string
|
|
json_str = json.dumps(json_obj, indent=4)
|
|
|
|
fig = plt.figure(figsize=(8.5, 11)) # Standard page size
|
|
plt.axis("off") # Turn off axes for a clean page
|
|
|
|
y = 0.95 # Start at the top of the page
|
|
if title:
|
|
plt.text(0.5, y, title, ha="center", va="top", fontsize=fontsize + 4, weight="bold")
|
|
y -= 0.05 # Add space after the title
|
|
|
|
# Split the JSON string into lines and render them
|
|
lines = json_str.splitlines()
|
|
for line in lines:
|
|
plt.text(0.05, y, line, ha="left", va="top", fontsize=fontsize, family="monospace")
|
|
y -= 0.02 # Move down for the next line
|
|
|
|
# Stop if the text exceeds the page
|
|
if y < 0.05:
|
|
break
|
|
|
|
self.pdf_pages.savefig(fig) # Save the figure as a page in the PDF
|
|
plt.close(fig) # Close the figure to free up memory
|
|
|
|
self.add_chart_to_group(chart, title) # Treat the JSON page as a "chart" in the group
|
|
|
|
def generate_pdf(self) -> None:
|
|
"""Generate the PDF report with all the added chart groups."""
|
|
self._initialize_pdf() # Initialize the PDF
|
|
|
|
for group in self.groups:
|
|
self._save_group_to_pdf(group) # Save each group to the PDF
|
|
|
|
self.pdf_pages.close() # Close the PDF to finalize the report
|
|
|
|
|
|
def prepare_visualize(
|
|
parameters: OptimizationParameters,
|
|
results: dict,
|
|
filename: str = "visualization_results.pdf",
|
|
start_hour: int = 0,
|
|
) -> None:
|
|
global debug_visualize
|
|
|
|
report = VisualizationReport(filename)
|
|
next_full_hour_date = EnergyManagement.set_start_datetime()
|
|
# Group 1:
|
|
report.create_line_chart_date(
|
|
next_full_hour_date,
|
|
[
|
|
parameters.ems.gesamtlast[start_hour:],
|
|
],
|
|
title="Load Profile",
|
|
# xlabel="Hours", # not enough space
|
|
ylabel="Load (Wh)",
|
|
labels=["Total Load (Wh)"],
|
|
)
|
|
report.create_line_chart_date(
|
|
next_full_hour_date,
|
|
[
|
|
parameters.ems.pv_prognose_wh[start_hour:],
|
|
],
|
|
title="PV Forecast",
|
|
# xlabel="Hours", # not enough space
|
|
ylabel="PV Generation (Wh)",
|
|
)
|
|
|
|
report.create_line_chart_date(
|
|
next_full_hour_date,
|
|
[
|
|
np.full(
|
|
len(parameters.ems.gesamtlast) - start_hour,
|
|
parameters.ems.einspeiseverguetung_euro_pro_wh[start_hour:]
|
|
if isinstance(parameters.ems.einspeiseverguetung_euro_pro_wh, list)
|
|
else parameters.ems.einspeiseverguetung_euro_pro_wh,
|
|
)
|
|
],
|
|
title="Remuneration",
|
|
# xlabel="Hours", # not enough space
|
|
ylabel="€/Wh",
|
|
x2label=None, # not enough space
|
|
)
|
|
if parameters.temperature_forecast:
|
|
report.create_line_chart_date(
|
|
next_full_hour_date,
|
|
[
|
|
parameters.temperature_forecast[start_hour:],
|
|
],
|
|
title="Temperature Forecast",
|
|
# xlabel="Hours", # not enough space
|
|
ylabel="°C",
|
|
x2label=None, # not enough space
|
|
)
|
|
report.finalize_group()
|
|
|
|
# Group 2:
|
|
report.create_line_chart_date(
|
|
next_full_hour_date, # start_date
|
|
[
|
|
results["result"]["Last_Wh_pro_Stunde"],
|
|
results["result"]["Home_appliance_wh_per_hour"],
|
|
results["result"]["Netzeinspeisung_Wh_pro_Stunde"],
|
|
results["result"]["Netzbezug_Wh_pro_Stunde"],
|
|
results["result"]["Verluste_Pro_Stunde"],
|
|
],
|
|
title="Energy Flow per Hour",
|
|
# xlabel="Date", # not enough space
|
|
ylabel="Energy (Wh)",
|
|
labels=[
|
|
"Load (Wh)",
|
|
"Household Device (Wh)",
|
|
"Grid Feed-in (Wh)",
|
|
"Grid Consumption (Wh)",
|
|
"Losses (Wh)",
|
|
],
|
|
markers=["o", "o", "x", "^", "^"],
|
|
line_styles=["-", "--", ":", "-.", "-"],
|
|
)
|
|
report.finalize_group()
|
|
|
|
# Group 3:
|
|
report.create_line_chart_date(
|
|
next_full_hour_date, # start_date
|
|
[results["result"]["akku_soc_pro_stunde"], results["result"]["EAuto_SoC_pro_Stunde"]],
|
|
title="Battery SOC",
|
|
# xlabel="Date", # not enough space
|
|
ylabel="%",
|
|
labels=[
|
|
"Battery SOC (%)",
|
|
"Electric Vehicle SOC (%)",
|
|
],
|
|
markers=["o", "x"],
|
|
)
|
|
report.create_line_chart_date(
|
|
next_full_hour_date, # start_date
|
|
[parameters.ems.strompreis_euro_pro_wh[start_hour:]],
|
|
# title="Electricity Price", # not enough space
|
|
# xlabel="Date", # not enough space
|
|
ylabel="Electricity Price (€/Wh)",
|
|
x2label=None, # not enough space
|
|
)
|
|
|
|
labels = list(
|
|
item
|
|
for sublist in zip(
|
|
list(str(i) for i in range(0, 23, 2)), list(str(" ") for i in range(0, 23, 2))
|
|
)
|
|
for item in sublist
|
|
)
|
|
labels = labels[start_hour:] + labels
|
|
|
|
report.create_bar_chart(
|
|
labels,
|
|
[
|
|
results["ac_charge"][start_hour:],
|
|
results["dc_charge"][start_hour:],
|
|
results["discharge_allowed"][start_hour:],
|
|
],
|
|
title="AC/DC Charging and Discharge Overview",
|
|
ylabel="Relative Power (0-1) / Discharge (0 or 1)",
|
|
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
|
|
colors=["blue", "green", "red"],
|
|
bottom=3,
|
|
xlabels=labels,
|
|
)
|
|
report.finalize_group()
|
|
|
|
# Group 4:
|
|
|
|
report.create_line_chart_date(
|
|
next_full_hour_date, # start_date
|
|
[
|
|
results["result"]["Kosten_Euro_pro_Stunde"],
|
|
results["result"]["Einnahmen_Euro_pro_Stunde"],
|
|
],
|
|
title="Financial Balance per Hour",
|
|
# xlabel="Date", # not enough space
|
|
ylabel="Euro",
|
|
labels=["Costs", "Revenue"],
|
|
)
|
|
|
|
extra_data = results["extra_data"]
|
|
report.create_scatter_plot(
|
|
extra_data["verluste"],
|
|
extra_data["bilanz"],
|
|
title="Scatter Plot",
|
|
xlabel="losses",
|
|
ylabel="balance",
|
|
c=extra_data["nebenbedingung"],
|
|
)
|
|
|
|
values_list = [
|
|
[
|
|
results["result"]["Gesamtkosten_Euro"],
|
|
results["result"]["Gesamteinnahmen_Euro"],
|
|
results["result"]["Gesamtbilanz_Euro"],
|
|
]
|
|
]
|
|
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
|
|
|
|
report.create_bar_chart(
|
|
labels=labels,
|
|
values_list=values_list,
|
|
title="Financial Overview",
|
|
ylabel="Euro",
|
|
xlabels=["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"],
|
|
)
|
|
|
|
report.finalize_group()
|
|
|
|
# Group 1: Scatter plot of losses vs balance with color-coded constraints
|
|
f1 = np.array(extra_data["verluste"]) # Losses
|
|
f2 = np.array(extra_data["bilanz"]) # Balance
|
|
n1 = np.array(extra_data["nebenbedingung"]) # Constraints
|
|
|
|
# Filter data where 'nebenbedingung' < 0.01
|
|
filtered_indices = n1 < 0.01
|
|
filtered_losses = f1[filtered_indices]
|
|
filtered_balance = f2[filtered_indices]
|
|
|
|
# Group 2: Violin plot for filtered losses
|
|
if filtered_losses.size > 0:
|
|
report.create_violin_plot(
|
|
data_list=[filtered_losses], # Data for filtered losses
|
|
labels=["Filtered Losses"], # Label for the violin plot
|
|
title="Violin Plot for Filtered Losses (Constraint < 0.01)",
|
|
xlabel="Losses",
|
|
ylabel="Values",
|
|
)
|
|
else:
|
|
print("No data available for filtered losses violin plot (Constraint < 0.01)")
|
|
|
|
# Group 3: Violin plot for filtered balance
|
|
if filtered_balance.size > 0:
|
|
report.create_violin_plot(
|
|
data_list=[filtered_balance], # Data for filtered balance
|
|
labels=["Filtered Balance"], # Label for the violin plot
|
|
title="Violin Plot for Filtered Balance (Constraint < 0.01)",
|
|
xlabel="Balance",
|
|
ylabel="Values",
|
|
)
|
|
else:
|
|
print("No data available for filtered balance violin plot (Constraint < 0.01)")
|
|
|
|
if filtered_balance.size > 0 or filtered_losses.size > 0:
|
|
report.finalize_group()
|
|
if debug_visualize or results["fixed_seed"]:
|
|
report.create_line_chart(
|
|
0,
|
|
[
|
|
results["fitness_history"]["avg"],
|
|
results["fitness_history"]["max"],
|
|
results["fitness_history"]["min"],
|
|
],
|
|
title=f"DEBUG: Generation Fitness for seed {results['fixed_seed']}",
|
|
xlabel="Generation",
|
|
ylabel="Fitness",
|
|
labels=[
|
|
"avg",
|
|
"max",
|
|
"min",
|
|
],
|
|
markers=[".", ".", "."],
|
|
)
|
|
report.finalize_group()
|
|
# Generate the PDF report
|
|
report.generate_pdf()
|
|
|
|
|
|
def generate_example_report(filename: str = "example_report.pdf") -> None:
|
|
"""Generate example visualization report."""
|
|
global debug_visualize
|
|
|
|
report = VisualizationReport(filename, "test")
|
|
x_hours = 0 # Define x-axis start values (e.g., hours)
|
|
|
|
# Group 1: Adding charts to be displayed on the same page
|
|
report.create_line_chart(
|
|
x_hours,
|
|
[np.array([10, 20, 30, 40])],
|
|
title="Load Profile",
|
|
xlabel="Hours",
|
|
ylabel="Load (Wh)",
|
|
)
|
|
report.create_line_chart(
|
|
x_hours,
|
|
[np.array([5, 15, 25, 35])],
|
|
title="PV Forecast",
|
|
xlabel="Hours",
|
|
ylabel="PV Generation (Wh)",
|
|
)
|
|
report.create_line_chart(
|
|
x_hours,
|
|
[np.array([5, 15, 25, 35])],
|
|
title="PV Forecast",
|
|
xlabel="Hours",
|
|
ylabel="PV Generation (Wh)",
|
|
)
|
|
# Note: If there are only 3 charts per page, the first is as wide as the page
|
|
|
|
report.finalize_group() # Finalize the first group of charts
|
|
|
|
# Group 2: Adding more charts to be displayed on another page
|
|
report.create_line_chart(
|
|
x_hours,
|
|
[np.array([0.2, 0.25, 0.3, 0.35])],
|
|
title="Electricity Price",
|
|
xlabel="Hours",
|
|
ylabel="Price (€/Wh)",
|
|
)
|
|
report.create_bar_chart(
|
|
["Costs", "Revenue", "Balance"],
|
|
[[500.0], [600.0], [100.0]],
|
|
title="Financial Overview",
|
|
ylabel="Euro",
|
|
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
|
|
colors=["red", "green", "blue"],
|
|
)
|
|
report.create_scatter_plot(
|
|
np.array([5, 6, 7, 8]),
|
|
np.array([100, 200, 150, 250]),
|
|
title="Scatter Plot",
|
|
xlabel="Losses",
|
|
ylabel="Balance",
|
|
c=np.array([0.1, 0.2, 0.3, 0.4]),
|
|
)
|
|
report.finalize_group() # Finalize the second group of charts
|
|
|
|
# Group 3: Adding a violin plot
|
|
data = [np.random.normal(0, std, 100) for std in range(1, 5)] # Example data for violin plot
|
|
report.create_violin_plot(
|
|
data,
|
|
labels=["Group 1", "Group 2", "Group 3", "Group 4"],
|
|
title="Violin Plot",
|
|
xlabel="Groups",
|
|
ylabel="Values",
|
|
)
|
|
data = [np.random.normal(0, 1, 100)] # Example data for violin plot
|
|
report.create_violin_plot(
|
|
data, labels=["Group 1"], title="Violin Plot", xlabel="Group", ylabel="Values"
|
|
)
|
|
|
|
report.finalize_group() # Finalize the third group of charts
|
|
|
|
debug_visualize = True # set level for example report
|
|
|
|
if debug_visualize:
|
|
report.create_line_chart(
|
|
x_hours,
|
|
[np.array([0.2, 0.25, 0.3, 0.35])],
|
|
title="DEBUG",
|
|
xlabel="DEBUG",
|
|
ylabel="DEBUG",
|
|
)
|
|
report.finalize_group() # Finalize the third group of charts
|
|
|
|
report.add_text_page(
|
|
text=" Bisher passierte folgendes:"
|
|
"Am Anfang wurde das Universum erschaffen."
|
|
"Das machte viele Leute sehr wütend und wurde allent-"
|
|
"halben als Schritt in die falsche Richtung angesehen...",
|
|
title="Don't Panic!",
|
|
fontsize=14,
|
|
)
|
|
report.finalize_group()
|
|
|
|
sample_json = {
|
|
"name": "Visualization Report",
|
|
"version": 1.0,
|
|
"charts": [
|
|
{"type": "line", "data_points": 50},
|
|
{"type": "bar", "categories": 10},
|
|
],
|
|
"metadata": {"author": "AI Assistant", "date": "2025-01-11"},
|
|
}
|
|
|
|
report.add_json_page(json_obj=sample_json, title="Formatted JSON Data", fontsize=10)
|
|
report.finalize_group()
|
|
|
|
report.create_line_chart_date(
|
|
pendulum.now().subtract(hours=0),
|
|
[list(np.random.random(840))],
|
|
title="test",
|
|
xlabel="test",
|
|
ylabel="test",
|
|
)
|
|
report.finalize_group()
|
|
# Generate the PDF report
|
|
report.generate_pdf()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
generate_example_report()
|