mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
286 lines
13 KiB
Python
286 lines
13 KiB
Python
import os
|
|
import sys
|
|
import random
|
|
from datetime import datetime, timedelta
|
|
|
|
import numpy as np
|
|
|
|
from deap import base, creator, tools, algorithms
|
|
|
|
from modules.class_akku import PVAkku
|
|
from modules.class_ems import EnergieManagementSystem
|
|
from modules.class_haushaltsgeraet import Haushaltsgeraet
|
|
from modules.class_inverter import Wechselrichter
|
|
from config import moegliche_ladestroeme_in_prozent
|
|
from modules.visualize import visualisiere_ergebnisse
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
class optimization_problem:
|
|
def __init__(self, prediction_hours=48, strafe=10, optimization_hours=24, verbose=False, fixed_seed=None):
|
|
self.prediction_hours = prediction_hours
|
|
self.strafe = strafe
|
|
self.opti_param = None
|
|
self.fixed_eauto_hours = prediction_hours - optimization_hours
|
|
self.possible_charge_values = moegliche_ladestroeme_in_prozent
|
|
self.verbose = verbose
|
|
if fixed_seed is not None:
|
|
random.seed(fixed_seed)
|
|
|
|
def split_individual(self, individual):
|
|
"""Splits an individual into its components: discharge hours, EV charge hours, and appliance start."""
|
|
discharge_hours_bin = individual[:self.prediction_hours]
|
|
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2]
|
|
|
|
spuelstart_int = individual[-1] if self.opti_param.get("haushaltsgeraete", 0) > 0 else None
|
|
|
|
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
|
|
|
|
def setup_deap_environment(self, opti_param, start_hour):
|
|
"""Sets up the DEAP environment with the given optimization parameters."""
|
|
self.opti_param = opti_param
|
|
if "FitnessMin" in creator.__dict__:
|
|
del creator.FitnessMin
|
|
if "Individual" in creator.__dict__:
|
|
del creator.Individual
|
|
# Clear any previous fitness and individual definitions
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
|
|
self.toolbox = base.Toolbox()
|
|
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
|
self.toolbox.register("attr_float", random.uniform, 0, 1)
|
|
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
|
|
|
def create_individual():
|
|
"""Creates an individual based on the prediction hours and appliance start time."""
|
|
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
|
|
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
|
|
if opti_param["haushaltsgeraete"] > 0:
|
|
attrs.append(self.toolbox.attr_int())
|
|
return creator.Individual(attrs)
|
|
|
|
self.toolbox.register("individual", create_individual)
|
|
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
|
self.toolbox.register("mate", tools.cxTwoPoint)
|
|
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
|
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
|
|
|
def evaluate_inner(self, individual, ems, start_hour):
|
|
"""Performs inner evaluation of an individual's performance."""
|
|
ems.reset()
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
|
|
|
if self.opti_param["haushaltsgeraete"] > 0:
|
|
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
|
|
|
|
ems.set_akku_discharge_hours(discharge_hours_bin)
|
|
|
|
# Ensure fixed EV charging hours are set to 0.0
|
|
eautocharge_hours_float[self.prediction_hours - self.fixed_eauto_hours:] = [0.0] * self.fixed_eauto_hours
|
|
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
|
|
|
return ems.simuliere(start_hour)
|
|
|
|
def evaluate(self, individual, ems, parameter, start_hour, worst_case):
|
|
"""
|
|
Fitness function that evaluates the given individual by applying it to the EMS and calculating penalties and rewards.
|
|
"""
|
|
try:
|
|
evaluation_results = self.evaluate_inner(individual, ems, start_hour)
|
|
except Exception:
|
|
return (100000.0,)
|
|
|
|
# Calculate total balance in euros
|
|
gesamtbilanz = evaluation_results["Gesamtbilanz_Euro"]
|
|
if worst_case:
|
|
gesamtbilanz *= -1.0
|
|
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
|
max_ladeleistung = np.max(self.possible_charge_values)
|
|
|
|
# Calculate penalties
|
|
strafe_ueberschreitung = self.calculate_exceeding_penalty(eautocharge_hours_float, max_ladeleistung)
|
|
gesamtbilanz += self.calculate_unused_discharge_penalty(discharge_hours_bin)
|
|
gesamtbilanz += self.calculate_restricted_charging_penalty(eautocharge_hours_float, parameter)
|
|
|
|
# Check minimum state of charge (SoC) for the EV
|
|
final_soc = ems.eauto.ladezustand_in_prozent()
|
|
if (parameter['eauto_min_soc'] - final_soc) > 0.0:
|
|
gesamtbilanz += self.calculate_min_soc_penalty(eautocharge_hours_float, parameter, final_soc)
|
|
|
|
# Record extra data for the individual
|
|
eauto_roi = parameter['eauto_min_soc'] - final_soc
|
|
individual.extra_data = (evaluation_results["Gesamtbilanz_Euro"], evaluation_results["Gesamt_Verluste"], eauto_roi)
|
|
|
|
# Calculate residual energy in the battery
|
|
restenergie_akku = ems.akku.aktueller_energieinhalt()
|
|
restwert_akku = restenergie_akku * parameter["preis_euro_pro_wh_akku"]
|
|
|
|
# Final penalties and fitness calculation
|
|
strafe = max(0, (parameter['eauto_min_soc'] - final_soc) * self.strafe)
|
|
gesamtbilanz += strafe - restwert_akku + strafe_ueberschreitung
|
|
|
|
return (gesamtbilanz,)
|
|
def calculate_exceeding_penalty(self, eautocharge_hours_float, max_ladeleistung):
|
|
"""Calculate penalties for exceeding charging power limits."""
|
|
penalty = 0.0
|
|
for ladeleistung in eautocharge_hours_float:
|
|
if ladeleistung > max_ladeleistung:
|
|
penalty += self.strafe * 10 # Penalty is proportional to the violation
|
|
return penalty
|
|
|
|
def calculate_unused_discharge_penalty(self, discharge_hours_bin):
|
|
"""Calculate penalty for unused discharge hours."""
|
|
penalty = 0.0
|
|
for hour in discharge_hours_bin:
|
|
if hour == 0.0:
|
|
penalty += 0.01 # Small penalty for each unused discharge hour
|
|
return penalty
|
|
|
|
def calculate_restricted_charging_penalty(self, eautocharge_hours_float, parameter):
|
|
"""Calculate penalty for charging the EV during restricted hours."""
|
|
penalty = 0.0
|
|
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
|
if eautocharge_hours_float[i] != 0.0:
|
|
penalty += self.strafe # Penalty for charging during fixed hours
|
|
return penalty
|
|
|
|
def calculate_min_soc_penalty(self, eautocharge_hours_float, parameter, final_soc):
|
|
"""Calculate penalty for not meeting the minimum state of charge (SoC)."""
|
|
penalty = 0.0
|
|
for hour in eautocharge_hours_float:
|
|
if hour != 0.0:
|
|
penalty += self.strafe # Penalty for not meeting minimum SoC
|
|
return penalty
|
|
# Genetic Algorithm for Optimization
|
|
|
|
|
|
|
|
# Example of how to use the callback in your optimization
|
|
|
|
def optimize(self, start_solution=None, generations_no_improvement=20):
|
|
population = self.toolbox.population(n=300)
|
|
hof = tools.HallOfFame(1)
|
|
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
stats.register("avg", np.mean)
|
|
stats.register("min", np.min)
|
|
stats.register("max", np.max)
|
|
|
|
if self.verbose:
|
|
print("Start solution:", start_solution)
|
|
|
|
if start_solution is not None and start_solution != -1:
|
|
starting_individual = creator.Individual(start_solution)
|
|
population = [starting_individual] * 3 + population
|
|
|
|
# Register the convergence callback
|
|
convergence_count = 0
|
|
convergence_last = float('inf')
|
|
generations_no_improvement = 20
|
|
|
|
# Run the genetic algorithm with 3 additional callback per generation
|
|
for gen in range(1000): # Define the number of generations
|
|
population, logbook = algorithms.eaMuPlusLambda(
|
|
population, self.toolbox,
|
|
mu=100, lambda_=200,
|
|
cxpb=0.5, mutpb=0.3,
|
|
ngen=2, stats=stats, # Run for 1 generation at a time
|
|
halloffame=hof, verbose=False
|
|
)
|
|
# Retrieve statistics from the logbook (only one generation per loop)
|
|
if len(logbook) > 0:
|
|
gen_stats = logbook[-1]
|
|
# Print generation stats if self.verbose is True
|
|
if self.verbose:
|
|
print(f"Generation {gen}: {gen_stats}")
|
|
|
|
# Call the convergence check after each generation
|
|
|
|
best_fitness = max(ind.fitness.values[0] for ind in population)
|
|
|
|
if best_fitness >= convergence_last:
|
|
convergence_count += 1
|
|
if convergence_count >= generations_no_improvement:
|
|
if self.verbose:
|
|
print(f"Convergence detected at generation {gen}. No improvement in the last {generations_no_improvement} generations.")
|
|
break
|
|
else:
|
|
convergence_count = 0
|
|
convergence_last = best_fitness
|
|
# Collect extra data (if exists) from the individuals in the population
|
|
member = {"bilanz": [], "verluste": [], "nebenbedingung": []}
|
|
for ind in population:
|
|
if hasattr(ind, 'extra_data'):
|
|
member["bilanz"].append(ind.extra_data[0])
|
|
member["verluste"].append(ind.extra_data[1])
|
|
member["nebenbedingung"].append(ind.extra_data[2])
|
|
print(max(ind.fitness.values[0] for ind in population))
|
|
|
|
# Return the best solution
|
|
return hof[0], member
|
|
|
|
def optimierung_ems(self, parameter=None, start_hour=None, worst_case=False, startdate=None):
|
|
"""Orchestrates the entire EMS optimization."""
|
|
current_date = datetime.now()
|
|
if startdate is None:
|
|
date = (current_date + timedelta(hours=self.prediction_hours)).strftime("%Y-%m-%d")
|
|
date_now = current_date.strftime("%Y-%m-%d")
|
|
else:
|
|
date = (startdate + timedelta(hours=self.prediction_hours)).strftime("%Y-%m-%d")
|
|
date_now = startdate.strftime("%Y-%m-%d")
|
|
|
|
# Initialize battery and EV objects
|
|
akku = PVAkku(kapazitaet_wh=parameter['pv_akku_cap'], hours=self.prediction_hours,
|
|
start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
|
akku.set_charge_per_hour(np.ones(self.prediction_hours))
|
|
|
|
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours,
|
|
lade_effizienz=parameter["eauto_charge_efficiency"], max_ladeleistung_w=parameter["eauto_charge_power"],
|
|
start_soc_prozent=parameter["eauto_soc"])
|
|
eauto.set_charge_per_hour(np.ones(self.prediction_hours))
|
|
|
|
# Household appliance initialization
|
|
spuelmaschine = None
|
|
if parameter["haushaltsgeraet_dauer"] > 0:
|
|
spuelmaschine = Haushaltsgeraet(hours=self.prediction_hours,
|
|
verbrauch_kwh=parameter["haushaltsgeraet_wh"],
|
|
dauer_h=parameter["haushaltsgeraet_dauer"])
|
|
spuelmaschine.set_startzeitpunkt(start_hour)
|
|
|
|
ems = EnergieManagementSystem(
|
|
gesamtlast=parameter["gesamtlast"],
|
|
pv_prognose_wh=parameter['pv_forecast'],
|
|
strompreis_euro_pro_wh=parameter["strompreis_euro_pro_wh"],
|
|
einspeiseverguetung_euro_pro_wh=np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]),
|
|
eauto=eauto,
|
|
haushaltsgeraet=spuelmaschine,
|
|
wechselrichter=Wechselrichter(10000, akku)
|
|
)
|
|
|
|
self.setup_deap_environment({"haushaltsgeraete": int(spuelmaschine is not None)}, start_hour)
|
|
|
|
self.toolbox.register("evaluate", lambda ind: self.evaluate(ind, ems, parameter, start_hour, worst_case))
|
|
start_solution, extra_data = self.optimize(parameter['start_solution'])
|
|
best_solution = start_solution
|
|
|
|
# Perform final evaluation and visualize results
|
|
o = self.evaluate_inner(best_solution, ems, start_hour)
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(best_solution)
|
|
|
|
visualisiere_ergebnisse(parameter["gesamtlast"], parameter['pv_forecast'], parameter["strompreis_euro_pro_wh"], o,
|
|
discharge_hours_bin, eautocharge_hours_float,
|
|
parameter['temperature_forecast'], start_hour, self.prediction_hours,
|
|
parameter["strompreis_euro_pro_wh"], extra_data=extra_data)
|
|
|
|
return {
|
|
"discharge_hours_bin": discharge_hours_bin,
|
|
"eautocharge_hours_float": eautocharge_hours_float,
|
|
"result": o,
|
|
"eauto_obj": ems.eauto.to_dict(),
|
|
"start_solution": best_solution,
|
|
"spuelstart": spuelstart_int,
|
|
"simulation_data": o
|
|
}
|