EOS/tests/test_class_ems.py
Dominique Lasserre f61665669f Migrate from Flask to FastAPI (#163)
* Migrate from Flask to FastAPI

 * FastAPI migration:
    - Use pydantic model classes as input parameters to the
      data/calculation classes.
    - Interface field names changed to constructor parameter names (for
      simplicity only during transition, should be updated in a followup
      PR).
    - Add basic interface requirements (e.g. some values > 0, etc.).
 * Update tests for new data format.
 * Python requirement down to 3.9 (TypeGuard no longer needed)
 * Makefile: Add helpful targets (e.g. development server with reload)

* Move API doc from README to pydantic model classes (swagger)

 * Link to swagger.io with own openapi.yml.
 * Commit openapi.json and check with pytest for changes so the
   documentation is always up-to-date.

* Streamline docker

* FastAPI: Run startup action on dev server

 * Fix config for /strompreis, endpoint still broken however.

* test_openapi: Compare against docs/.../openapi.json

* Move fastapi to server/ submodule

 * See #187 for new repository structure.
2024-11-15 22:27:25 +01:00

359 lines
9.4 KiB
Python

import numpy as np
import pytest
from akkudoktoreos.class_akku import EAutoParameters, PVAkku, PVAkkuParameters
from akkudoktoreos.class_ems import (
EnergieManagementSystem,
EnergieManagementSystemParameters,
)
from akkudoktoreos.class_haushaltsgeraet import (
Haushaltsgeraet,
HaushaltsgeraetParameters,
)
from akkudoktoreos.class_inverter import Wechselrichter, WechselrichterParameters
from akkudoktoreos.config import AppConfig
prediction_hours = 48
optimization_hours = 24
start_hour = 1
# Example initialization of necessary components
@pytest.fixture
def create_ems_instance(tmp_config: AppConfig) -> EnergieManagementSystem:
"""Fixture to create an EnergieManagementSystem instance with given test parameters."""
# Initialize the battery and the inverter
akku = PVAkku(
PVAkkuParameters(kapazitaet_wh=5000, start_soc_prozent=80, min_soc_prozent=10),
hours=prediction_hours,
)
akku.reset()
wechselrichter = Wechselrichter(WechselrichterParameters(max_leistung_wh=10000), akku)
# Household device (currently not used, set to None)
home_appliance = Haushaltsgeraet(
HaushaltsgeraetParameters(
verbrauch_wh=2000,
dauer_h=2,
),
hours=prediction_hours,
)
home_appliance.set_startzeitpunkt(2)
# Example initialization of electric car battery
eauto = PVAkku(
EAutoParameters(kapazitaet_wh=26400, start_soc_prozent=10, min_soc_prozent=10),
hours=prediction_hours,
)
eauto.set_charge_per_hour(np.full(prediction_hours, 1))
# Parameters based on previous example data
pv_prognose_wh = [
0,
0,
0,
0,
0,
0,
0,
8.05,
352.91,
728.51,
930.28,
1043.25,
1106.74,
1161.69,
6018.82,
5519.07,
3969.88,
3017.96,
1943.07,
1007.17,
319.67,
7.88,
0,
0,
0,
0,
0,
0,
0,
0,
0,
5.04,
335.59,
705.32,
1121.12,
1604.79,
2157.38,
1433.25,
5718.49,
4553.96,
3027.55,
2574.46,
1720.4,
963.4,
383.3,
0,
0,
0,
]
strompreis_euro_pro_wh = [
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
0.0003384,
0.0003318,
0.0003284,
0.0003283,
0.0003289,
0.0003334,
0.0003290,
0.0003302,
0.0003042,
0.0002430,
0.0002280,
0.0002212,
0.0002093,
0.0001879,
0.0001838,
0.0002004,
0.0002198,
0.0002270,
0.0002997,
0.0003195,
0.0003081,
0.0002969,
0.0002921,
0.0002780,
]
einspeiseverguetung_euro_pro_wh = 0.00007
preis_euro_pro_wh_akku = 0.0001
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Initialize the energy management system with the respective parameters
ems = EnergieManagementSystem(
tmp_config.eos,
EnergieManagementSystemParameters(
pv_prognose_wh=pv_prognose_wh,
strompreis_euro_pro_wh=strompreis_euro_pro_wh,
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
preis_euro_pro_wh_akku=preis_euro_pro_wh_akku,
gesamtlast=gesamtlast,
),
eauto=eauto,
haushaltsgeraet=home_appliance,
wechselrichter=wechselrichter,
)
return ems
def test_simulation(create_ems_instance):
"""Test the EnergieManagementSystem simulation method."""
ems = create_ems_instance
# Simulate starting from hour 1 (this value can be adjusted)
result = ems.simuliere(start_stunde=start_hour)
# visualisiere_ergebnisse(
# ems.gesamtlast,
# ems.pv_prognose_wh,
# ems.strompreis_euro_pro_wh,
# result,
# ems.akku.discharge_array+ems.akku.charge_array,
# None,
# ems.pv_prognose_wh,
# start_hour,
# 48,
# np.full(48, 0.0),
# filename="visualization_results.pdf",
# extra_data=None,
# )
# Assertions to validate results
assert result is not None, "Result should not be None"
assert isinstance(result, dict), "Result should be a dictionary"
assert "Last_Wh_pro_Stunde" in result, "Result should contain 'Last_Wh_pro_Stunde'"
"""
Check the result of the simulation based on expected values.
"""
# Example result returned from the simulation (used for assertions)
assert result is not None, "Result should not be None."
# Check that the result is a dictionary
assert isinstance(result, dict), "Result should be a dictionary."
# Verify that the expected keys are present in the result
expected_keys = [
"Last_Wh_pro_Stunde",
"Netzeinspeisung_Wh_pro_Stunde",
"Netzbezug_Wh_pro_Stunde",
"Kosten_Euro_pro_Stunde",
"akku_soc_pro_stunde",
"Einnahmen_Euro_pro_Stunde",
"Gesamtbilanz_Euro",
"EAuto_SoC_pro_Stunde",
"Gesamteinnahmen_Euro",
"Gesamtkosten_Euro",
"Verluste_Pro_Stunde",
"Gesamt_Verluste",
"Haushaltsgeraet_wh_pro_stunde",
]
for key in expected_keys:
assert key in result, f"The key '{key}' should be present in the result."
# Check the length of the main arrays
assert (
len(result["Last_Wh_pro_Stunde"]) == 47
), "The length of 'Last_Wh_pro_Stunde' should be 48."
assert (
len(result["Netzeinspeisung_Wh_pro_Stunde"]) == 47
), "The length of 'Netzeinspeisung_Wh_pro_Stunde' should be 48."
assert (
len(result["Netzbezug_Wh_pro_Stunde"]) == 47
), "The length of 'Netzbezug_Wh_pro_Stunde' should be 48."
assert (
len(result["Kosten_Euro_pro_Stunde"]) == 47
), "The length of 'Kosten_Euro_pro_Stunde' should be 48."
assert (
len(result["akku_soc_pro_stunde"]) == 47
), "The length of 'akku_soc_pro_stunde' should be 48."
# Verify specific values in the 'Last_Wh_pro_Stunde' array
assert (
result["Last_Wh_pro_Stunde"][1] == 1527.13
), "The value at index 1 of 'Last_Wh_pro_Stunde' should be 1527.13."
assert (
result["Last_Wh_pro_Stunde"][2] == 1468.88
), "The value at index 2 of 'Last_Wh_pro_Stunde' should be 1468.88."
assert (
result["Last_Wh_pro_Stunde"][12] == 1132.03
), "The value at index 12 of 'Last_Wh_pro_Stunde' should be 1132.03."
# Verify that the value at index 0 is 'None'
# Check that 'Netzeinspeisung_Wh_pro_Stunde' and 'Netzbezug_Wh_pro_Stunde' are consistent
assert (
result["Netzbezug_Wh_pro_Stunde"][1] == 0
), "The value at index 1 of 'Netzbezug_Wh_pro_Stunde' should be 0."
# Verify the total balance
assert (
abs(result["Gesamtbilanz_Euro"] - 1.7880374129090917) < 1e-5
), "Total balance should be 1.7880374129090917."
# Check total revenue and total costs
assert (
abs(result["Gesamteinnahmen_Euro"] - 1.3169784090909087) < 1e-5
), "Total revenue should be 1.3169784090909087."
assert (
abs(result["Gesamtkosten_Euro"] - 3.1050158220000004) < 1e-5
), "Total costs should be 3.1050158220000004 ."
# Check the losses
assert (
abs(result["Gesamt_Verluste"] - 2615.222727272727) < 1e-5
), "Total losses should be 2615.222727272727 ."
# Check the values in 'akku_soc_pro_stunde'
assert (
result["akku_soc_pro_stunde"][-1] == 28.675
), "The value at index -1 of 'akku_soc_pro_stunde' should be 28.675."
assert (
result["akku_soc_pro_stunde"][1] == 25.379090909090905
), "The value at index 1 of 'akku_soc_pro_stunde' should be 25.379090909090905."
# Check home appliances
assert (
sum(ems.haushaltsgeraet.get_lastkurve()) == 2000
), "The sum of 'ems.haushaltsgeraet.get_lastkurve()' should be 2000."
assert (
np.nansum(
np.where(
np.equal(result["Haushaltsgeraet_wh_pro_stunde"], None),
np.nan,
np.array(result["Haushaltsgeraet_wh_pro_stunde"]),
)
)
== 2000
), "The sum of 'Haushaltsgeraet_wh_pro_stunde' should be 2000."
print("All tests passed successfully.")