EOS/modules/visualize.py
Normann 1eed420131 bugfix visualize module
datetime.datetime.now() is incorrectly accessing the datetime class
2024-10-04 16:16:03 +02:00

293 lines
9.1 KiB
Python

from datetime import datetime
# Set the backend for matplotlib to Agg
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from modules.class_sommerzeit import ist_dst_wechsel
matplotlib.use("Agg")
def visualisiere_ergebnisse(
gesamtlast,
pv_forecast,
strompreise,
ergebnisse,
discharge_hours,
laden_moeglich,
temperature,
start_hour,
prediction_hours,
einspeiseverguetung_euro_pro_wh,
filename="visualization_results.pdf",
extra_data=None,
):
#####################
# 24-hour visualization
#####################
with PdfPages(filename) as pdf:
# Load and PV generation
plt.figure(figsize=(14, 14))
plt.subplot(3, 3, 1)
hours = np.arange(0, prediction_hours)
gesamtlast_array = np.array(gesamtlast)
# Plot individual loads
plt.plot(hours, gesamtlast_array, label="Load (Wh)", marker="o")
# Calculate and plot total load
plt.plot(
hours,
gesamtlast_array,
label="Total Load (Wh)",
marker="o",
linewidth=2,
linestyle="--",
)
plt.xlabel("Hour")
plt.ylabel("Load (Wh)")
plt.title("Load Profiles")
plt.grid(True)
plt.legend()
# Electricity prices
hours_p = np.arange(0, len(strompreise))
plt.subplot(3, 2, 2)
plt.plot(
hours_p,
strompreise,
label="Electricity Price (€/Wh)",
color="purple",
marker="s",
)
plt.title("Electricity Prices")
plt.xlabel("Hour of the Day")
plt.ylabel("Price (€/Wh)")
plt.legend()
plt.grid(True)
# PV forecast
plt.subplot(3, 2, 3)
plt.plot(hours, pv_forecast, label="PV Generation (Wh)", marker="x")
plt.title("PV Forecast")
plt.xlabel("Hour of the Day")
plt.ylabel("Wh")
plt.legend()
plt.grid(True)
# Feed-in remuneration
plt.subplot(3, 2, 4)
plt.plot(
hours,
einspeiseverguetung_euro_pro_wh,
label="Remuneration (€/Wh)",
marker="x",
)
plt.title("Remuneration")
plt.xlabel("Hour of the Day")
plt.ylabel("€/Wh")
plt.legend()
plt.grid(True)
# Temperature forecast
plt.subplot(3, 2, 5)
plt.title("Temperature Forecast (°C)")
plt.plot(hours, temperature, label="Temperature (°C)", marker="x")
plt.xlabel("Hour of the Day")
plt.ylabel("°C")
plt.legend()
plt.grid(True)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
#####################
# Start hour visualization
#####################
plt.figure(figsize=(14, 10))
if ist_dst_wechsel(datetime.now()):
hours = np.arange(start_hour, prediction_hours - 1)
else:
hours = np.arange(start_hour, prediction_hours)
# Energy flow, grid feed-in, and grid consumption
plt.subplot(3, 2, 1)
plt.plot(hours, ergebnisse["Last_Wh_pro_Stunde"], label="Load (Wh)", marker="o")
plt.plot(
hours,
ergebnisse["Haushaltsgeraet_wh_pro_stunde"],
label="Household Device (Wh)",
marker="o",
)
plt.plot(
hours,
ergebnisse["Netzeinspeisung_Wh_pro_Stunde"],
label="Grid Feed-in (Wh)",
marker="x",
)
plt.plot(
hours,
ergebnisse["Netzbezug_Wh_pro_Stunde"],
label="Grid Consumption (Wh)",
marker="^",
)
plt.plot(
hours, ergebnisse["Verluste_Pro_Stunde"], label="Losses (Wh)", marker="^"
)
plt.title("Energy Flow per Hour")
plt.xlabel("Hour")
plt.ylabel("Energy (Wh)")
plt.legend()
# State of charge for batteries
plt.subplot(3, 2, 2)
plt.plot(
hours, ergebnisse["akku_soc_pro_stunde"], label="PV Battery (%)", marker="x"
)
plt.plot(
hours,
ergebnisse["E-Auto_SoC_pro_Stunde"],
label="E-Car Battery (%)",
marker="x",
)
plt.legend(
loc="upper left", bbox_to_anchor=(1, 1)
) # Place legend outside the plot
plt.grid(True, which="both", axis="x") # Grid for every hour
ax1 = plt.subplot(3, 2, 3)
for hour, value in enumerate(discharge_hours):
ax1.axvspan(
hour,
hour + 1,
color="red",
ymax=value,
alpha=0.3,
label="Discharge Possibility" if hour == 0 else "",
)
for hour, value in enumerate(laden_moeglich):
ax1.axvspan(
hour,
hour + 1,
color="green",
ymax=value,
alpha=0.3,
label="Charging Possibility" if hour == 0 else "",
)
ax1.legend(loc="upper left")
ax1.set_xlim(0, prediction_hours)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
# Financial overview
fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots
total_costs = ergebnisse["Gesamtkosten_Euro"]
total_revenue = ergebnisse["Gesamteinnahmen_Euro"]
total_balance = ergebnisse["Gesamtbilanz_Euro"]
losses = ergebnisse["Gesamt_Verluste"]
# Costs and revenues per hour on the first axis (axs[0])
axs[0].plot(
hours,
ergebnisse["Kosten_Euro_pro_Stunde"],
label="Costs (Euro)",
marker="o",
color="red",
)
axs[0].plot(
hours,
ergebnisse["Einnahmen_Euro_pro_Stunde"],
label="Revenue (Euro)",
marker="x",
color="green",
)
axs[0].set_title("Financial Balance per Hour")
axs[0].set_xlabel("Hour")
axs[0].set_ylabel("Euro")
axs[0].legend()
axs[0].grid(True)
# Summary of finances on the second axis (axs[1])
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
values = [total_costs, total_revenue, total_balance]
colors = ["red" if value > 0 else "green" for value in values]
axs[1].bar(labels, values, color=colors)
axs[1].set_title("Financial Overview")
axs[1].set_ylabel("Euro")
# Second axis (ax2) for losses, shared with axs[1]
ax2 = axs[1].twinx()
ax2.bar("Total Losses", losses, color="blue")
ax2.set_ylabel("Losses [Wh]", color="blue")
ax2.tick_params(axis="y", labelcolor="blue")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
# Additional data visualization if provided
if extra_data is not None:
plt.figure(figsize=(14, 10))
plt.subplot(1, 2, 1)
f1 = np.array(extra_data["verluste"])
f2 = np.array(extra_data["bilanz"])
n1 = np.array(extra_data["nebenbedingung"])
scatter = plt.scatter(f1, f2, c=n1, cmap="viridis")
# Add color legend
plt.colorbar(scatter, label="Constraint")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
plt.figure(figsize=(14, 10))
filtered_losses = np.array(
[
v
for v, n in zip(
extra_data["verluste"], extra_data["nebenbedingung"]
)
if n < 0.01
]
)
filtered_balance = np.array(
[
b
for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"])
if n < 0.01
]
)
best_loss = min(filtered_losses)
worst_loss = max(filtered_losses)
best_balance = min(filtered_balance)
worst_balance = max(filtered_balance)
data = [filtered_losses, filtered_balance]
labels = ["Losses", "Balance"]
# Create plots
fig, axs = plt.subplots(
1, 2, figsize=(10, 6), sharey=False
) # Two subplots, separate y-axes
# First violin plot for losses
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
axs[0].set_title("Losses")
axs[0].set_xticklabels(["Losses"])
# Second violin plot for balance
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
axs[1].set_title("Balance")
axs[1].set_xticklabels(["Balance"])
# Fine-tuning
plt.tight_layout()
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the figure