mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
293 lines
9.1 KiB
Python
293 lines
9.1 KiB
Python
from datetime import datetime
|
|
|
|
# Set the backend for matplotlib to Agg
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
|
|
from modules.class_sommerzeit import ist_dst_wechsel
|
|
|
|
matplotlib.use("Agg")
|
|
|
|
|
|
def visualisiere_ergebnisse(
|
|
gesamtlast,
|
|
pv_forecast,
|
|
strompreise,
|
|
ergebnisse,
|
|
discharge_hours,
|
|
laden_moeglich,
|
|
temperature,
|
|
start_hour,
|
|
prediction_hours,
|
|
einspeiseverguetung_euro_pro_wh,
|
|
filename="visualization_results.pdf",
|
|
extra_data=None,
|
|
):
|
|
#####################
|
|
# 24-hour visualization
|
|
#####################
|
|
with PdfPages(filename) as pdf:
|
|
# Load and PV generation
|
|
plt.figure(figsize=(14, 14))
|
|
plt.subplot(3, 3, 1)
|
|
hours = np.arange(0, prediction_hours)
|
|
|
|
gesamtlast_array = np.array(gesamtlast)
|
|
# Plot individual loads
|
|
plt.plot(hours, gesamtlast_array, label="Load (Wh)", marker="o")
|
|
|
|
# Calculate and plot total load
|
|
plt.plot(
|
|
hours,
|
|
gesamtlast_array,
|
|
label="Total Load (Wh)",
|
|
marker="o",
|
|
linewidth=2,
|
|
linestyle="--",
|
|
)
|
|
plt.xlabel("Hour")
|
|
plt.ylabel("Load (Wh)")
|
|
plt.title("Load Profiles")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
|
|
# Electricity prices
|
|
hours_p = np.arange(0, len(strompreise))
|
|
plt.subplot(3, 2, 2)
|
|
plt.plot(
|
|
hours_p,
|
|
strompreise,
|
|
label="Electricity Price (€/Wh)",
|
|
color="purple",
|
|
marker="s",
|
|
)
|
|
plt.title("Electricity Prices")
|
|
plt.xlabel("Hour of the Day")
|
|
plt.ylabel("Price (€/Wh)")
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# PV forecast
|
|
plt.subplot(3, 2, 3)
|
|
plt.plot(hours, pv_forecast, label="PV Generation (Wh)", marker="x")
|
|
plt.title("PV Forecast")
|
|
plt.xlabel("Hour of the Day")
|
|
plt.ylabel("Wh")
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# Feed-in remuneration
|
|
plt.subplot(3, 2, 4)
|
|
plt.plot(
|
|
hours,
|
|
einspeiseverguetung_euro_pro_wh,
|
|
label="Remuneration (€/Wh)",
|
|
marker="x",
|
|
)
|
|
plt.title("Remuneration")
|
|
plt.xlabel("Hour of the Day")
|
|
plt.ylabel("€/Wh")
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# Temperature forecast
|
|
plt.subplot(3, 2, 5)
|
|
plt.title("Temperature Forecast (°C)")
|
|
plt.plot(hours, temperature, label="Temperature (°C)", marker="x")
|
|
plt.xlabel("Hour of the Day")
|
|
plt.ylabel("°C")
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
pdf.savefig() # Save the current figure state to the PDF
|
|
plt.close() # Close the current figure to free up memory
|
|
|
|
#####################
|
|
# Start hour visualization
|
|
#####################
|
|
|
|
plt.figure(figsize=(14, 10))
|
|
|
|
if ist_dst_wechsel(datetime.now()):
|
|
hours = np.arange(start_hour, prediction_hours - 1)
|
|
else:
|
|
hours = np.arange(start_hour, prediction_hours)
|
|
|
|
# Energy flow, grid feed-in, and grid consumption
|
|
plt.subplot(3, 2, 1)
|
|
plt.plot(hours, ergebnisse["Last_Wh_pro_Stunde"], label="Load (Wh)", marker="o")
|
|
plt.plot(
|
|
hours,
|
|
ergebnisse["Haushaltsgeraet_wh_pro_stunde"],
|
|
label="Household Device (Wh)",
|
|
marker="o",
|
|
)
|
|
plt.plot(
|
|
hours,
|
|
ergebnisse["Netzeinspeisung_Wh_pro_Stunde"],
|
|
label="Grid Feed-in (Wh)",
|
|
marker="x",
|
|
)
|
|
plt.plot(
|
|
hours,
|
|
ergebnisse["Netzbezug_Wh_pro_Stunde"],
|
|
label="Grid Consumption (Wh)",
|
|
marker="^",
|
|
)
|
|
plt.plot(
|
|
hours, ergebnisse["Verluste_Pro_Stunde"], label="Losses (Wh)", marker="^"
|
|
)
|
|
plt.title("Energy Flow per Hour")
|
|
plt.xlabel("Hour")
|
|
plt.ylabel("Energy (Wh)")
|
|
plt.legend()
|
|
|
|
# State of charge for batteries
|
|
plt.subplot(3, 2, 2)
|
|
plt.plot(
|
|
hours, ergebnisse["akku_soc_pro_stunde"], label="PV Battery (%)", marker="x"
|
|
)
|
|
plt.plot(
|
|
hours,
|
|
ergebnisse["E-Auto_SoC_pro_Stunde"],
|
|
label="E-Car Battery (%)",
|
|
marker="x",
|
|
)
|
|
plt.legend(
|
|
loc="upper left", bbox_to_anchor=(1, 1)
|
|
) # Place legend outside the plot
|
|
plt.grid(True, which="both", axis="x") # Grid for every hour
|
|
|
|
ax1 = plt.subplot(3, 2, 3)
|
|
for hour, value in enumerate(discharge_hours):
|
|
ax1.axvspan(
|
|
hour,
|
|
hour + 1,
|
|
color="red",
|
|
ymax=value,
|
|
alpha=0.3,
|
|
label="Discharge Possibility" if hour == 0 else "",
|
|
)
|
|
for hour, value in enumerate(laden_moeglich):
|
|
ax1.axvspan(
|
|
hour,
|
|
hour + 1,
|
|
color="green",
|
|
ymax=value,
|
|
alpha=0.3,
|
|
label="Charging Possibility" if hour == 0 else "",
|
|
)
|
|
ax1.legend(loc="upper left")
|
|
ax1.set_xlim(0, prediction_hours)
|
|
|
|
pdf.savefig() # Save the current figure state to the PDF
|
|
plt.close() # Close the current figure to free up memory
|
|
|
|
# Financial overview
|
|
fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots
|
|
total_costs = ergebnisse["Gesamtkosten_Euro"]
|
|
total_revenue = ergebnisse["Gesamteinnahmen_Euro"]
|
|
total_balance = ergebnisse["Gesamtbilanz_Euro"]
|
|
losses = ergebnisse["Gesamt_Verluste"]
|
|
|
|
# Costs and revenues per hour on the first axis (axs[0])
|
|
axs[0].plot(
|
|
hours,
|
|
ergebnisse["Kosten_Euro_pro_Stunde"],
|
|
label="Costs (Euro)",
|
|
marker="o",
|
|
color="red",
|
|
)
|
|
axs[0].plot(
|
|
hours,
|
|
ergebnisse["Einnahmen_Euro_pro_Stunde"],
|
|
label="Revenue (Euro)",
|
|
marker="x",
|
|
color="green",
|
|
)
|
|
axs[0].set_title("Financial Balance per Hour")
|
|
axs[0].set_xlabel("Hour")
|
|
axs[0].set_ylabel("Euro")
|
|
axs[0].legend()
|
|
axs[0].grid(True)
|
|
|
|
# Summary of finances on the second axis (axs[1])
|
|
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
|
|
values = [total_costs, total_revenue, total_balance]
|
|
colors = ["red" if value > 0 else "green" for value in values]
|
|
axs[1].bar(labels, values, color=colors)
|
|
axs[1].set_title("Financial Overview")
|
|
axs[1].set_ylabel("Euro")
|
|
|
|
# Second axis (ax2) for losses, shared with axs[1]
|
|
ax2 = axs[1].twinx()
|
|
ax2.bar("Total Losses", losses, color="blue")
|
|
ax2.set_ylabel("Losses [Wh]", color="blue")
|
|
ax2.tick_params(axis="y", labelcolor="blue")
|
|
|
|
pdf.savefig() # Save the complete figure to the PDF
|
|
plt.close() # Close the figure
|
|
|
|
# Additional data visualization if provided
|
|
if extra_data is not None:
|
|
plt.figure(figsize=(14, 10))
|
|
plt.subplot(1, 2, 1)
|
|
f1 = np.array(extra_data["verluste"])
|
|
f2 = np.array(extra_data["bilanz"])
|
|
n1 = np.array(extra_data["nebenbedingung"])
|
|
scatter = plt.scatter(f1, f2, c=n1, cmap="viridis")
|
|
|
|
# Add color legend
|
|
plt.colorbar(scatter, label="Constraint")
|
|
|
|
pdf.savefig() # Save the complete figure to the PDF
|
|
plt.close() # Close the figure
|
|
|
|
plt.figure(figsize=(14, 10))
|
|
filtered_losses = np.array(
|
|
[
|
|
v
|
|
for v, n in zip(
|
|
extra_data["verluste"], extra_data["nebenbedingung"]
|
|
)
|
|
if n < 0.01
|
|
]
|
|
)
|
|
filtered_balance = np.array(
|
|
[
|
|
b
|
|
for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"])
|
|
if n < 0.01
|
|
]
|
|
)
|
|
|
|
best_loss = min(filtered_losses)
|
|
worst_loss = max(filtered_losses)
|
|
best_balance = min(filtered_balance)
|
|
worst_balance = max(filtered_balance)
|
|
|
|
data = [filtered_losses, filtered_balance]
|
|
labels = ["Losses", "Balance"]
|
|
# Create plots
|
|
fig, axs = plt.subplots(
|
|
1, 2, figsize=(10, 6), sharey=False
|
|
) # Two subplots, separate y-axes
|
|
|
|
# First violin plot for losses
|
|
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
|
|
axs[0].set_title("Losses")
|
|
axs[0].set_xticklabels(["Losses"])
|
|
|
|
# Second violin plot for balance
|
|
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
|
|
axs[1].set_title("Balance")
|
|
axs[1].set_xticklabels(["Balance"])
|
|
|
|
# Fine-tuning
|
|
plt.tight_layout()
|
|
|
|
pdf.savefig() # Save the current figure state to the PDF
|
|
plt.close() # Close the figure
|