mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
sets the seed for random to a fixed value to be able to compare results. Value chosen for obvious reason. Same value is used in the test case.
373 lines
5.1 KiB
Python
373 lines
5.1 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from pprint import pprint
|
|
|
|
# Import necessary modules from the project
|
|
from modules.class_optimize import optimization_problem
|
|
|
|
start_hour = 10
|
|
|
|
# PV Forecast (in W)
|
|
pv_forecast = [
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
8.05,
|
|
352.91,
|
|
728.51,
|
|
930.28,
|
|
1043.25,
|
|
1106.74,
|
|
1161.69,
|
|
6018.82,
|
|
5519.07,
|
|
3969.88,
|
|
3017.96,
|
|
1943.07,
|
|
1007.17,
|
|
319.67,
|
|
7.88,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
5.04,
|
|
335.59,
|
|
705.32,
|
|
1121.12,
|
|
1604.79,
|
|
2157.38,
|
|
1433.25,
|
|
5718.49,
|
|
4553.96,
|
|
3027.55,
|
|
2574.46,
|
|
1720.4,
|
|
963.4,
|
|
383.3,
|
|
0,
|
|
0,
|
|
0,
|
|
]
|
|
|
|
# Temperature Forecast (in degree C)
|
|
temperature_forecast = [
|
|
18.3,
|
|
17.8,
|
|
16.9,
|
|
16.2,
|
|
15.6,
|
|
15.1,
|
|
14.6,
|
|
14.2,
|
|
14.3,
|
|
14.8,
|
|
15.7,
|
|
16.7,
|
|
17.4,
|
|
18.0,
|
|
18.6,
|
|
19.2,
|
|
19.1,
|
|
18.7,
|
|
18.5,
|
|
17.7,
|
|
16.2,
|
|
14.6,
|
|
13.6,
|
|
13.0,
|
|
12.6,
|
|
12.2,
|
|
11.7,
|
|
11.6,
|
|
11.3,
|
|
11.0,
|
|
10.7,
|
|
10.2,
|
|
11.4,
|
|
14.4,
|
|
16.4,
|
|
18.3,
|
|
19.5,
|
|
20.7,
|
|
21.9,
|
|
22.7,
|
|
23.1,
|
|
23.1,
|
|
22.8,
|
|
21.8,
|
|
20.2,
|
|
19.1,
|
|
18.0,
|
|
17.4,
|
|
]
|
|
|
|
# Electricity Price (in Euro per Wh)
|
|
strompreis_euro_pro_wh = [
|
|
0.0003384,
|
|
0.0003318,
|
|
0.0003284,
|
|
0.0003283,
|
|
0.0003289,
|
|
0.0003334,
|
|
0.0003290,
|
|
0.0003302,
|
|
0.0003042,
|
|
0.0002430,
|
|
0.0002280,
|
|
0.0002212,
|
|
0.0002093,
|
|
0.0001879,
|
|
0.0001838,
|
|
0.0002004,
|
|
0.0002198,
|
|
0.0002270,
|
|
0.0002997,
|
|
0.0003195,
|
|
0.0003081,
|
|
0.0002969,
|
|
0.0002921,
|
|
0.0002780,
|
|
0.0003384,
|
|
0.0003318,
|
|
0.0003284,
|
|
0.0003283,
|
|
0.0003289,
|
|
0.0003334,
|
|
0.0003290,
|
|
0.0003302,
|
|
0.0003042,
|
|
0.0002430,
|
|
0.0002280,
|
|
0.0002212,
|
|
0.0002093,
|
|
0.0001879,
|
|
0.0001838,
|
|
0.0002004,
|
|
0.0002198,
|
|
0.0002270,
|
|
0.0002997,
|
|
0.0003195,
|
|
0.0003081,
|
|
0.0002969,
|
|
0.0002921,
|
|
0.0002780,
|
|
]
|
|
|
|
# Overall System Load (in W)
|
|
gesamtlast = [
|
|
676.71,
|
|
876.19,
|
|
527.13,
|
|
468.88,
|
|
531.38,
|
|
517.95,
|
|
483.15,
|
|
472.28,
|
|
1011.68,
|
|
995.00,
|
|
1053.07,
|
|
1063.91,
|
|
1320.56,
|
|
1132.03,
|
|
1163.67,
|
|
1176.82,
|
|
1216.22,
|
|
1103.78,
|
|
1129.12,
|
|
1178.71,
|
|
1050.98,
|
|
988.56,
|
|
912.38,
|
|
704.61,
|
|
516.37,
|
|
868.05,
|
|
694.34,
|
|
608.79,
|
|
556.31,
|
|
488.89,
|
|
506.91,
|
|
804.89,
|
|
1141.98,
|
|
1056.97,
|
|
992.46,
|
|
1155.99,
|
|
827.01,
|
|
1257.98,
|
|
1232.67,
|
|
871.26,
|
|
860.88,
|
|
1158.03,
|
|
1222.72,
|
|
1221.04,
|
|
949.99,
|
|
987.01,
|
|
733.99,
|
|
592.97,
|
|
]
|
|
|
|
# Start Solution (binary)
|
|
start_solution = [
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
1,
|
|
1,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
0,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
0,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
]
|
|
|
|
# Define parameters for the optimization problem
|
|
parameter = {
|
|
# Cost of storing energy in battery (per Wh)
|
|
"preis_euro_pro_wh_akku": 10e-05,
|
|
# Initial state of charge (SOC) of PV battery (%)
|
|
"pv_soc": 80,
|
|
# Battery capacity (in Wh)
|
|
"pv_akku_cap": 26400,
|
|
# Yearly energy consumption (in Wh)
|
|
"year_energy": 4100000,
|
|
# Feed-in tariff for exporting electricity (per Wh)
|
|
"einspeiseverguetung_euro_pro_wh": 7e-05,
|
|
# Maximum heating power (in W)
|
|
"max_heizleistung": 1000,
|
|
# Overall load on the system
|
|
"gesamtlast": gesamtlast,
|
|
# PV generation forecast (48 hours)
|
|
"pv_forecast": pv_forecast,
|
|
# Temperature forecast (48 hours)
|
|
"temperature_forecast": temperature_forecast,
|
|
# Electricity price forecast (48 hours)
|
|
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
|
|
# Minimum SOC for electric car
|
|
"eauto_min_soc": 70,
|
|
# Electric car battery capacity (Wh)
|
|
"eauto_cap": 60000,
|
|
# Charging efficiency of the electric car
|
|
"eauto_charge_efficiency": 0.95,
|
|
# Charging power of the electric car (W)
|
|
"eauto_charge_power": 11040,
|
|
# Current SOC of the electric car (%)
|
|
"eauto_soc": 54,
|
|
# Current PV power generation (W)
|
|
"pvpowernow": 211.137503624,
|
|
# Initial solution for the optimization
|
|
"start_solution": start_solution,
|
|
# Household appliance consumption (Wh)
|
|
"haushaltsgeraet_wh": 5000,
|
|
# Duration of appliance usage (hours)
|
|
"haushaltsgeraet_dauer": 2,
|
|
}
|
|
|
|
# Initialize the optimization problem
|
|
opt_class = optimization_problem(
|
|
prediction_hours=48, strafe=10, optimization_hours=24, verbose=True, fixed_seed=42
|
|
)
|
|
|
|
# Perform the optimisation based on the provided parameters and start hour
|
|
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour)
|
|
|
|
# Print or visualize the result
|
|
pprint(ergebnis)
|