mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
98 lines
3.3 KiB
Python
98 lines
3.3 KiB
Python
import json
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from akkudoktoreos.config import AppConfig
|
|
from akkudoktoreos.optimization.genetic import (
|
|
OptimizationParameters,
|
|
OptimizeResponse,
|
|
optimization_problem,
|
|
)
|
|
|
|
DIR_TESTDATA = Path(__file__).parent / "testdata"
|
|
|
|
|
|
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
|
|
assert set(actual) == set(expected)
|
|
|
|
for key, value in expected.items():
|
|
if isinstance(value, dict):
|
|
assert isinstance(actual[key], dict)
|
|
compare_dict(actual[key], value)
|
|
elif isinstance(value, list):
|
|
assert isinstance(actual[key], list)
|
|
assert actual[key] == pytest.approx(value)
|
|
else:
|
|
assert actual[key] == pytest.approx(value)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"fn_in, fn_out, ngen",
|
|
[
|
|
("optimize_input_1.json", "optimize_result_1.json", 3),
|
|
("optimize_input_2.json", "optimize_result_2.json", 3),
|
|
("optimize_input_2.json", "optimize_result_2_full.json", 400),
|
|
],
|
|
)
|
|
def test_optimize(
|
|
fn_in: str,
|
|
fn_out: str,
|
|
ngen: int,
|
|
is_full_run: bool,
|
|
tmp_config: AppConfig,
|
|
):
|
|
"""Test optimierung_ems."""
|
|
# Load input and output data
|
|
file = DIR_TESTDATA / fn_in
|
|
with file.open("r") as f_in:
|
|
input_data = OptimizationParameters(**json.load(f_in))
|
|
|
|
file = DIR_TESTDATA / fn_out
|
|
# In case a new test case is added, we don't want to fail here, so the new output is written to disk before
|
|
try:
|
|
with file.open("r") as f_out:
|
|
expected_result = OptimizeResponse(**json.load(f_out))
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
opt_class = optimization_problem(tmp_config, fixed_seed=42)
|
|
start_hour = 10
|
|
|
|
# if ngen > 10 and not is_full_run:
|
|
# pytest.skip()
|
|
|
|
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
|
|
|
|
def visualize_to_file(*args, **kwargs):
|
|
from akkudoktoreos.visualize import visualisiere_ergebnisse
|
|
|
|
# Write test output pdf to file, so we can look at it manually
|
|
kwargs["filename"] = visualize_filename
|
|
return visualisiere_ergebnisse(*args, **kwargs)
|
|
|
|
with patch(
|
|
"akkudoktoreos.optimization.genetic.visualisiere_ergebnisse", side_effect=visualize_to_file
|
|
) as visualisiere_ergebnisse_patch:
|
|
# Call the optimization function
|
|
ergebnis = opt_class.optimierung_ems(
|
|
parameters=input_data, start_hour=start_hour, ngen=ngen
|
|
)
|
|
# Write test output to file, so we can take it as new data on intended change
|
|
with open(DIR_TESTDATA / f"new_{fn_out}", "w") as f_out:
|
|
f_out.write(ergebnis.model_dump_json(indent=4, exclude_unset=True))
|
|
|
|
assert ergebnis.result.Gesamtbilanz_Euro == pytest.approx(
|
|
expected_result.result.Gesamtbilanz_Euro
|
|
)
|
|
|
|
# Assert that the output contains all expected entries.
|
|
# This does not assert that the optimization always gives the same result!
|
|
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
|
|
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
|
|
|
|
# The function creates a visualization result PDF as a side-effect.
|
|
visualisiere_ergebnisse_patch.assert_called_once()
|