mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
497 lines
20 KiB
Python
497 lines
20 KiB
Python
import random
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
from deap import algorithms, base, creator, tools
|
|
|
|
from akkudoktoreos.class_akku import PVAkku
|
|
from akkudoktoreos.class_ems import EnergieManagementSystem
|
|
from akkudoktoreos.class_haushaltsgeraet import Haushaltsgeraet
|
|
from akkudoktoreos.class_inverter import Wechselrichter
|
|
from akkudoktoreos.config import possible_ev_charge_currents
|
|
from akkudoktoreos.visualize import visualisiere_ergebnisse
|
|
|
|
|
|
|
|
class optimization_problem:
|
|
def __init__(
|
|
self,
|
|
prediction_hours: int = 48,
|
|
strafe: float = 10,
|
|
optimization_hours: int = 24,
|
|
verbose: bool = False,
|
|
fixed_seed: Optional[int] = None,
|
|
):
|
|
"""Initialize the optimization problem with the required parameters."""
|
|
self.prediction_hours = prediction_hours
|
|
self.strafe = strafe
|
|
self.opti_param = None
|
|
self.fixed_eauto_hours = prediction_hours - optimization_hours
|
|
self.possible_charge_values = possible_ev_charge_currents
|
|
self.verbose = verbose
|
|
self.fix_seed = fixed_seed
|
|
self.optimize_ev = True
|
|
self.optimize_dc_charge = False
|
|
|
|
# Set a fixed seed for random operations if provided
|
|
if fixed_seed is not None:
|
|
random.seed(fixed_seed)
|
|
|
|
|
|
def decode_charge_discharge(self, discharge_hours_bin: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
"""
|
|
Decode the input array `discharge_hours_bin` into three separate arrays for AC charging, DC charging, and discharge.
|
|
The function maps AC and DC charging values to relative power levels (0 to 1), while the discharge remains binary (0 or 1).
|
|
|
|
Parameters:
|
|
- discharge_hours_bin (np.ndarray): Input array with integer values representing the different states.
|
|
The states are:
|
|
0: No action ("idle")
|
|
1: Discharge ("discharge")
|
|
2-6: AC charging with different power levels ("ac_charge")
|
|
7-8: DC charging Dissallowed/allowed ("dc_charge")
|
|
|
|
Returns:
|
|
- ac_charge (np.ndarray): Array with AC charging values as relative power (0-1), other values set to 0.
|
|
- dc_charge (np.ndarray): Array with DC charging values as relative power (0-1), other values set to 0.
|
|
- discharge (np.ndarray): Array with discharge values (1 for discharge, 0 otherwise).
|
|
"""
|
|
# Convert the input list to a NumPy array, if it's not already
|
|
discharge_hours_bin = np.array(discharge_hours_bin)
|
|
|
|
# Create ac_charge array: Only consider values between 2 and 6 (AC charging power levels), set the rest to 0
|
|
ac_charge = np.where((discharge_hours_bin >= 2) & (discharge_hours_bin <= 6), discharge_hours_bin - 1, 0)
|
|
ac_charge = ac_charge / 5.0 # Normalize AC charge to range between 0 and 1
|
|
|
|
# Create dc_charge array: 7 = Not allowed (mapped to 0), 8 = Allowed (mapped to 1)
|
|
# Create dc_charge array: Only if DC charge optimization is enabled
|
|
if self.optimize_dc_charge:
|
|
dc_charge = np.where(discharge_hours_bin == 8, 1, 0)
|
|
else:
|
|
dc_charge = np.ones_like(discharge_hours_bin) # Set DC charge to 0 if optimization is disabled
|
|
|
|
|
|
# Create discharge array: Only consider value 1 (Discharge), set the rest to 0 (binary output)
|
|
discharge = np.where(discharge_hours_bin == 1, 1, 0)
|
|
|
|
return ac_charge, dc_charge, discharge
|
|
|
|
|
|
|
|
# Custom mutation function that applies type-specific mutations
|
|
def mutate(self, individual):
|
|
"""
|
|
Custom mutation function for the individual. This function mutates different parts of the individual:
|
|
- Mutates the discharge and charge states (AC, DC, idle) using the split_charge_discharge method.
|
|
- Mutates the EV charging schedule if EV optimization is enabled.
|
|
- Mutates appliance start times if household appliances are part of the optimization.
|
|
|
|
Parameters:
|
|
- individual (list): The individual being mutated, which includes different optimization parameters.
|
|
|
|
Returns:
|
|
- (tuple): The mutated individual as a tuple (required by DEAP).
|
|
"""
|
|
|
|
# Step 1: Mutate the charge/discharge states (idle, discharge, AC charge, DC charge)
|
|
# Extract the relevant part of the individual for prediction hours, which represents the charge/discharge behavior.
|
|
charge_discharge_part = individual[:self.prediction_hours]
|
|
|
|
# Apply the mutation to the charge/discharge part
|
|
charge_discharge_mutated, = self.toolbox.mutate_charge_discharge(charge_discharge_part)
|
|
|
|
# Ensure that no invalid states are introduced during mutation (valid values: 0-8)
|
|
if self.optimize_dc_charge:
|
|
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, 8)
|
|
else:
|
|
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, 6)
|
|
|
|
# Use split_charge_discharge to split the mutated array into AC charge, DC charge, and discharge components
|
|
#ac_charge, dc_charge, discharge = self.split_charge_discharge(charge_discharge_mutated)
|
|
|
|
# Optionally: You can process the split arrays further if needed, for example,
|
|
# applying additional constraints or penalties, or keeping track of charging limits.
|
|
|
|
# Reassign the mutated values back to the individual
|
|
individual[:self.prediction_hours] = charge_discharge_mutated
|
|
|
|
# Step 2: Mutate EV charging schedule if enabled
|
|
if self.optimize_ev:
|
|
# Extract the relevant part for EV charging schedule
|
|
ev_charge_part = individual[self.prediction_hours : self.prediction_hours * 2]
|
|
|
|
# Apply mutation on the EV charging schedule
|
|
ev_charge_part_mutated, = self.toolbox.mutate_ev_charge_index(ev_charge_part)
|
|
|
|
# Ensure the EV does not charge during fixed hours (set those hours to 0)
|
|
ev_charge_part_mutated[self.prediction_hours - self.fixed_eauto_hours :] = [0] * self.fixed_eauto_hours
|
|
|
|
# Reassign the mutated EV charging part back to the individual
|
|
individual[self.prediction_hours : self.prediction_hours * 2] = ev_charge_part_mutated
|
|
|
|
# Step 3: Mutate appliance start times if household appliances are part of the optimization
|
|
if self.opti_param["haushaltsgeraete"] > 0:
|
|
# Extract the appliance part (typically a single value for the start hour)
|
|
appliance_part = [individual[-1]]
|
|
|
|
# Apply mutation on the appliance start hour
|
|
appliance_part_mutated, = self.toolbox.mutate_hour(appliance_part)
|
|
|
|
# Reassign the mutated appliance part back to the individual
|
|
individual[-1] = appliance_part_mutated[0]
|
|
|
|
return (individual,)
|
|
|
|
|
|
# Method to create an individual based on the conditions
|
|
def create_individual(self):
|
|
# Start with discharge states for the individual
|
|
individual_components = [self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
|
|
|
|
# Add EV charge index values if optimize_ev is True
|
|
if self.optimize_ev:
|
|
individual_components += [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
|
|
|
|
# Add the start time of the household appliance if it's being optimized
|
|
if self.opti_param["haushaltsgeraete"] > 0:
|
|
individual_components += [self.toolbox.attr_int()]
|
|
|
|
return creator.Individual(individual_components)
|
|
|
|
def split_individual(
|
|
self, individual: List[float]
|
|
) -> Tuple[List[int], List[float], Optional[int]]:
|
|
"""
|
|
Split the individual solution into its components:
|
|
1. Discharge hours (-1 (Charge),0 (Nothing),1 (Discharge)),
|
|
2. Electric vehicle charge hours (possible_charge_values),
|
|
3. Dishwasher start time (integer if applicable).
|
|
"""
|
|
|
|
discharge_hours_bin = individual[: self.prediction_hours]
|
|
eautocharge_hours_float = (
|
|
individual[self.prediction_hours : self.prediction_hours * 2]
|
|
if self.optimize_ev
|
|
else None
|
|
)
|
|
|
|
spuelstart_int = (
|
|
individual[-1]
|
|
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0
|
|
else None
|
|
)
|
|
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
|
|
|
|
def setup_deap_environment(self, opti_param: Dict[str, Any], start_hour: int) -> None:
|
|
"""
|
|
Set up the DEAP environment with fitness and individual creation rules.
|
|
"""
|
|
self.opti_param = opti_param
|
|
|
|
# Remove existing FitnessMin and Individual classes from creator if present
|
|
for attr in ["FitnessMin", "Individual"]:
|
|
if attr in creator.__dict__:
|
|
del creator.__dict__[attr]
|
|
|
|
# Create new FitnessMin and Individual classes
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
|
|
# Initialize toolbox with attributes and operations
|
|
self.toolbox = base.Toolbox()
|
|
if self.optimize_dc_charge:
|
|
self.toolbox.register("attr_discharge_state", random.randint, 0,8)
|
|
else:
|
|
self.toolbox.register("attr_discharge_state", random.randint, 0,6)
|
|
|
|
if self.optimize_ev:
|
|
self.toolbox.register("attr_ev_charge_index", random.randint, 0, len(possible_ev_charge_currents) - 1)
|
|
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
|
|
|
|
|
# Register individual creation function
|
|
self.toolbox.register("individual", self.create_individual)
|
|
|
|
# Register population, mating, mutation, and selection functions
|
|
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
|
self.toolbox.register("mate", tools.cxTwoPoint)
|
|
#self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
|
# Register separate mutation functions for each type of value:
|
|
# - Discharge state mutation (-5, 0, 1)
|
|
if self.optimize_dc_charge:
|
|
self.toolbox.register("mutate_charge_discharge", tools.mutUniformInt, low=0, up=8, indpb=0.1)
|
|
else:
|
|
self.toolbox.register("mutate_charge_discharge", tools.mutUniformInt, low=0, up=6, indpb=0.1)
|
|
# - Float mutation for EV charging values
|
|
self.toolbox.register("mutate_ev_charge_index", tools.mutUniformInt, low=0, up=len(possible_ev_charge_currents) - 1, indpb=0.1)
|
|
# - Start hour mutation for household devices
|
|
self.toolbox.register("mutate_hour", tools.mutUniformInt, low=start_hour, up=23, indpb=0.1)
|
|
|
|
# Register custom mutation function
|
|
self.toolbox.register("mutate", self.mutate)
|
|
|
|
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
|
|
|
def evaluate_inner(
|
|
self, individual: List[float], ems: EnergieManagementSystem, start_hour: int
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Internal evaluation function that simulates the energy management system (EMS)
|
|
using the provided individual solution.
|
|
"""
|
|
ems.reset()
|
|
discharge_hours_bin, eautocharge_hours_index, spuelstart_int = self.split_individual(
|
|
individual
|
|
)
|
|
if self.opti_param.get("haushaltsgeraete", 0) > 0:
|
|
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
|
|
|
|
ac,dc,discharge = self.decode_charge_discharge(discharge_hours_bin)
|
|
|
|
|
|
ems.set_akku_discharge_hours(discharge)
|
|
# Set DC charge hours only if DC optimization is enabled
|
|
if self.optimize_dc_charge:
|
|
ems.set_akku_dc_charge_hours(dc)
|
|
ems.set_akku_ac_charge_hours(ac)
|
|
|
|
if self.optimize_ev:
|
|
eautocharge_hours_float = [
|
|
possible_ev_charge_currents[i] for i in eautocharge_hours_index
|
|
]
|
|
ems.set_ev_charge_hours(eautocharge_hours_float)
|
|
else:
|
|
ems.set_ev_charge_hours(np.full(self.prediction_hours, 0 ))
|
|
return ems.simuliere(start_hour)
|
|
|
|
def evaluate(
|
|
self,
|
|
individual: List[float],
|
|
ems: EnergieManagementSystem,
|
|
parameter: Dict[str, Any],
|
|
start_hour: int,
|
|
worst_case: bool,
|
|
) -> Tuple[float]:
|
|
"""
|
|
Evaluate the fitness of an individual solution based on the simulation results.
|
|
"""
|
|
try:
|
|
o = self.evaluate_inner(individual, ems, start_hour)
|
|
except Exception as e:
|
|
return (100000.0,) # Return a high penalty in case of an exception
|
|
|
|
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
|
|
|
|
discharge_hours_bin, eautocharge_hours_float, _ = self.split_individual(individual)
|
|
|
|
# Small Penalty for not discharging
|
|
gesamtbilanz += sum(
|
|
0.01 for i in range(self.prediction_hours) if discharge_hours_bin[i] == 0.0
|
|
)
|
|
|
|
# Penalty for not meeting the minimum SOC (State of Charge) requirement
|
|
# if parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent() <= 0.0 and self.optimize_ev:
|
|
# gesamtbilanz += sum(
|
|
# self.strafe for ladeleistung in eautocharge_hours_float if ladeleistung != 0.0
|
|
# )
|
|
|
|
individual.extra_data = (
|
|
o["Gesamtbilanz_Euro"],
|
|
o["Gesamt_Verluste"],
|
|
parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent(),
|
|
)
|
|
|
|
# Adjust total balance with battery value and penalties for unmet SOC
|
|
|
|
restwert_akku = ems.akku.aktueller_energieinhalt() * parameter["preis_euro_pro_wh_akku"]
|
|
#print(ems.akku.aktueller_energieinhalt()," * ", parameter["preis_euro_pro_wh_akku"] , " ", restwert_akku, " ", gesamtbilanz)
|
|
gesamtbilanz += -restwert_akku
|
|
#print(gesamtbilanz)
|
|
if self.optimize_ev:
|
|
gesamtbilanz += max(
|
|
0,
|
|
(parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent()) * self.strafe,
|
|
)
|
|
|
|
|
|
return (gesamtbilanz,)
|
|
|
|
def optimize(
|
|
self, start_solution: Optional[List[float]] = None, ngen: int = 400
|
|
) -> Tuple[Any, Dict[str, List[Any]]]:
|
|
"""Run the optimization process using a genetic algorithm."""
|
|
population = self.toolbox.population(n=300)
|
|
hof = tools.HallOfFame(1)
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
stats.register("min", np.min)
|
|
|
|
if self.verbose:
|
|
print("Start optimize:", start_solution)
|
|
|
|
# Insert the start solution into the population if provided
|
|
if start_solution not in [None, -1]:
|
|
for _ in range(3):
|
|
population.insert(0, creator.Individual(start_solution))
|
|
|
|
#Run the evolutionary algorithm
|
|
algorithms.eaMuPlusLambda(
|
|
population,
|
|
self.toolbox,
|
|
mu=100,
|
|
lambda_=150,
|
|
cxpb=0.6,
|
|
mutpb=0.4,
|
|
ngen=ngen,
|
|
stats=stats,
|
|
halloffame=hof,
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
member = {"bilanz": [], "verluste": [], "nebenbedingung": []}
|
|
for ind in population:
|
|
if hasattr(ind, "extra_data"):
|
|
extra_value1, extra_value2, extra_value3 = ind.extra_data
|
|
member["bilanz"].append(extra_value1)
|
|
member["verluste"].append(extra_value2)
|
|
member["nebenbedingung"].append(extra_value3)
|
|
|
|
return hof[0], member
|
|
|
|
def optimierung_ems(
|
|
self,
|
|
parameter: Optional[Dict[str, Any]] = None,
|
|
start_hour: Optional[int] = None,
|
|
worst_case: bool = False,
|
|
startdate: Optional[Any] = None, # startdate is not used!
|
|
*,
|
|
ngen: int = 600,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Perform EMS (Energy Management System) optimization and visualize results.
|
|
"""
|
|
einspeiseverguetung_euro_pro_wh = np.full(
|
|
self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]
|
|
)
|
|
|
|
# Initialize PV and EV batteries
|
|
akku = PVAkku(
|
|
kapazitaet_wh=parameter["pv_akku_cap"],
|
|
hours=self.prediction_hours,
|
|
start_soc_prozent=parameter["pv_soc"],
|
|
min_soc_prozent=parameter["min_soc_prozent"],
|
|
max_ladeleistung_w=5000,
|
|
)
|
|
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
|
|
|
self.optimize_ev = True
|
|
if parameter["eauto_min_soc"] - parameter["eauto_soc"] <0:
|
|
self.optimize_ev = False
|
|
|
|
eauto = PVAkku(
|
|
kapazitaet_wh=parameter["eauto_cap"],
|
|
hours=self.prediction_hours,
|
|
lade_effizienz=parameter["eauto_charge_efficiency"],
|
|
entlade_effizienz=1.0,
|
|
max_ladeleistung_w=parameter["eauto_charge_power"],
|
|
start_soc_prozent=parameter["eauto_soc"],
|
|
)
|
|
eauto.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
|
|
|
# Initialize household appliance if applicable
|
|
spuelmaschine = (
|
|
Haushaltsgeraet(
|
|
hours=self.prediction_hours,
|
|
verbrauch_wh=parameter["haushaltsgeraet_wh"],
|
|
dauer_h=parameter["haushaltsgeraet_dauer"],
|
|
)
|
|
if parameter["haushaltsgeraet_dauer"] > 0
|
|
else None
|
|
)
|
|
|
|
# Initialize the inverter and energy management system
|
|
wr = Wechselrichter(10000, akku)
|
|
ems = EnergieManagementSystem(
|
|
gesamtlast=parameter["gesamtlast"],
|
|
pv_prognose_wh=parameter["pv_forecast"],
|
|
strompreis_euro_pro_wh=parameter["strompreis_euro_pro_wh"],
|
|
einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh,
|
|
eauto=eauto,
|
|
haushaltsgeraet=spuelmaschine,
|
|
wechselrichter=wr,
|
|
)
|
|
|
|
# Setup the DEAP environment and optimization process
|
|
self.setup_deap_environment({"haushaltsgeraete": 1 if spuelmaschine else 0}, start_hour)
|
|
self.toolbox.register(
|
|
"evaluate",
|
|
lambda ind: self.evaluate(ind, ems, parameter, start_hour, worst_case),
|
|
)
|
|
start_solution, extra_data = self.optimize(parameter["start_solution"], ngen=ngen)
|
|
|
|
# Perform final evaluation on the best solution
|
|
o = self.evaluate_inner(start_solution, ems, start_hour)
|
|
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(
|
|
start_solution
|
|
)
|
|
if self.optimize_ev:
|
|
eautocharge_hours_float = [possible_ev_charge_currents[i] for i in eautocharge_hours_float]
|
|
|
|
ac_charge, dc_charge, discharge = self.decode_charge_discharge(discharge_hours_bin)
|
|
# Visualize the results
|
|
visualisiere_ergebnisse(
|
|
parameter["gesamtlast"],
|
|
parameter["pv_forecast"],
|
|
parameter["strompreis_euro_pro_wh"],
|
|
o,
|
|
ac_charge,
|
|
dc_charge,
|
|
discharge,
|
|
parameter["temperature_forecast"],
|
|
start_hour,
|
|
self.prediction_hours,
|
|
einspeiseverguetung_euro_pro_wh,
|
|
extra_data=extra_data,
|
|
)
|
|
|
|
# List output keys where the first element needs to be changed to None
|
|
keys_to_modify = [
|
|
"Last_Wh_pro_Stunde",
|
|
"Netzeinspeisung_Wh_pro_Stunde",
|
|
"akku_soc_pro_stunde",
|
|
"Netzbezug_Wh_pro_Stunde",
|
|
"Kosten_Euro_pro_Stunde",
|
|
"Einnahmen_Euro_pro_Stunde",
|
|
"E-Auto_SoC_pro_Stunde",
|
|
"Verluste_Pro_Stunde",
|
|
"Haushaltsgeraet_wh_pro_stunde",
|
|
]
|
|
|
|
# Loop through each key in the list
|
|
for key in keys_to_modify:
|
|
# Convert the NumPy array to a list
|
|
element_list = o[key].tolist()
|
|
|
|
# Change the first value to None
|
|
#element_list[0] = None
|
|
# Change the NaN to None (JSON)
|
|
element_list = [
|
|
None if isinstance(x, (int, float)) and np.isnan(x) else x for x in element_list
|
|
]
|
|
|
|
# Assign the modified list back to the dictionary
|
|
o[key] = element_list
|
|
|
|
# Return final results as a dictionary
|
|
return {
|
|
"ac_charge": ac_charge.tolist(),
|
|
"dc_charge":dc_charge.tolist(),
|
|
"discharge_allowed":discharge.tolist(),
|
|
"eautocharge_hours_float": eautocharge_hours_float,
|
|
"result": o,
|
|
"eauto_obj": ems.eauto.to_dict(),
|
|
"start_solution": start_solution,
|
|
"spuelstart": spuelstart_int,
|
|
"simulation_data": o,
|
|
}
|
|
|