EOS/modules/class_soc_calc.py
2024-09-23 06:58:57 +02:00

272 lines
11 KiB
Python

import mariadb
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import simpson
from datetime import datetime, timedelta
class BatteryDataProcessor:
def __init__(self, config, voltage_high_threshold, voltage_low_threshold, current_low_threshold, gap, battery_capacity_ah):
self.config = config
self.voltage_high_threshold = voltage_high_threshold
self.voltage_low_threshold = voltage_low_threshold
self.current_low_threshold = current_low_threshold
self.gap = gap
self.battery_capacity_ah = battery_capacity_ah
self.conn = None
self.data = None
def connect_db(self):
self.conn = mariadb.connect(**self.config)
self.cursor = self.conn.cursor()
def disconnect_db(self):
if self.conn:
self.cursor.close()
self.conn.close()
def fetch_data(self, start_time):
query = """
SELECT timestamp, data, topic
FROM pip
WHERE timestamp >= %s AND (topic = 'battery_current' OR topic = 'battery_voltage')
ORDER BY timestamp
"""
self.cursor.execute(query, (start_time,))
rows = self.cursor.fetchall()
self.data = pd.DataFrame(rows, columns=['timestamp', 'data', 'topic'])
self.data['timestamp'] = pd.to_datetime(self.data['timestamp'])
self.data['data'] = self.data['data'].astype(float)
def process_data(self):
self.data.drop_duplicates(subset=['timestamp', 'topic'], inplace=True)
data_pivot = self.data.pivot(index='timestamp', columns='topic', values='data')
data_pivot = data_pivot.resample('1T').mean().interpolate()
data_pivot.columns.name = None
data_pivot.reset_index(inplace=True)
self.data = data_pivot
def group_points(self, df):
df = df.sort_values('timestamp')
groups = []
group = []
last_time = None
for _, row in df.iterrows():
if last_time is None or (row['timestamp'] - last_time) <= pd.Timedelta(minutes=self.gap):
group.append(row)
else:
groups.append(group)
group = [row]
last_time = row['timestamp']
if group:
groups.append(group)
last_points = [group[-1] for group in groups]
return last_points
def find_soc_points(self):
condition_soc_100 = (self.data['battery_voltage'] >= self.voltage_high_threshold) & (self.data['battery_current'].abs() <= self.current_low_threshold)
condition_soc_0 = (self.data['battery_voltage'] <= self.voltage_low_threshold) & (self.data['battery_current'].abs() <= self.current_low_threshold)
times_soc_100_all = self.data[condition_soc_100][['timestamp', 'battery_voltage', 'battery_current']]
times_soc_0_all = self.data[condition_soc_0][['timestamp', 'battery_voltage', 'battery_current']]
last_points_100 = self.group_points(times_soc_100_all)
last_points_0 = self.group_points(times_soc_0_all)
last_points_100_df = pd.DataFrame(last_points_100)
last_points_0_df = pd.DataFrame(last_points_0)
return last_points_100_df, last_points_0_df
def calculate_resetting_soc(self, last_points_100_df, last_points_0_df):
soc_values = []
integration_results = []
reset_points = pd.concat([last_points_100_df, last_points_0_df]).sort_values('timestamp')
# Initialisieren der SoC-Liste
self.data['calculated_soc'] = np.nan
for i in range(len(reset_points)):
start_point = reset_points.iloc[i]
if i < len(reset_points) - 1:
end_point = reset_points.iloc[i + 1]
else:
end_point = self.data.iloc[-1] # Verwenden des letzten Datensatzes als Endpunkt
if start_point['timestamp'] in last_points_100_df['timestamp'].values:
initial_soc = 100
elif start_point['timestamp'] in last_points_0_df['timestamp'].values:
initial_soc = 0
cut_data = self.data[(self.data['timestamp'] >= start_point['timestamp']) & (self.data['timestamp'] <= end_point['timestamp'])].copy()
cut_data['time_diff_hours'] = cut_data['timestamp'].diff().dt.total_seconds() / 3600
cut_data.dropna(subset=['time_diff_hours'], inplace=True)
calculated_soc = initial_soc
calculated_soc_list = [calculated_soc]
integrated_current = 0
for j in range(1, len(cut_data)):
current = cut_data.iloc[j]['battery_current']
delta_t = cut_data.iloc[j]['time_diff_hours']
delta_soc = (current * delta_t) / self.battery_capacity_ah * 100 # Convert to percentage
calculated_soc += delta_soc
calculated_soc = min(max(calculated_soc, 0), 100) # Clip to 0-100%
calculated_soc_list.append(calculated_soc)
# Integration des Stroms aufaddieren
integrated_current += current * delta_t
cut_data['calculated_soc'] = calculated_soc_list
soc_values.append(cut_data[['timestamp', 'calculated_soc']])
integration_results.append({
'start_time': start_point['timestamp'],
'end_time': end_point['timestamp'],
'integrated_current': integrated_current,
'start_soc': initial_soc,
'end_soc': calculated_soc_list[-1]
})
soc_df = pd.concat(soc_values).drop_duplicates(subset=['timestamp']).reset_index(drop=True)
return soc_df, integration_results
def calculate_soh(self, integration_results):
soh_values = []
for result in integration_results:
delta_soc = abs(result['start_soc'] - result['end_soc']) # Use the actual change in SoC
if delta_soc > 0: # Avoid division by zero
effective_capacity_ah = result['integrated_current']
soh = (effective_capacity_ah / self.battery_capacity_ah) * 100
soh_values.append({'timestamp': result['end_time'], 'soh': soh})
soh_df = pd.DataFrame(soh_values)
return soh_df
def delete_existing_soc_entries(self, soc_df):
delete_query = """
DELETE FROM pip
WHERE timestamp = %s AND topic = 'calculated_soc'
"""
timestamps = [(row['timestamp'].strftime('%Y-%m-%d %H:%M:%S'),) for _, row in soc_df.iterrows() if pd.notna(row['timestamp'])]
self.cursor.executemany(delete_query, timestamps)
self.conn.commit()
def update_database_with_soc(self, soc_df):
# Löschen der vorhandenen Einträge mit demselben Topic und Datum
self.delete_existing_soc_entries(soc_df)
# Resample `soc_df` auf 5-Minuten-Intervalle und berechnen des Mittelwerts
soc_df.set_index('timestamp', inplace=True)
soc_df_resampled = soc_df.resample('5T').mean().dropna().reset_index()
#soc_df_resampled['timestamp'] = soc_df_resampled['timestamp'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
print(soc_df_resampled)
# Einfügen der berechneten SoC-Werte in die Datenbank
insert_query = """
INSERT INTO pip (timestamp, data, topic)
VALUES (%s, %s, 'calculated_soc')
"""
for _, row in soc_df_resampled.iterrows():
print(row)
print(row['timestamp'])
record = (row['timestamp'].strftime('%Y-%m-%d %H:%M:%S'), row['calculated_soc'])
try:
self.cursor.execute(insert_query, record)
except mariadb.OperationalError as e:
print(f"Error inserting record {record}: {e}")
self.conn.commit()
def plot_data(self, last_points_100_df, last_points_0_df, soc_df):
plt.figure(figsize=(14, 10))
plt.subplot(4, 1, 1)
plt.plot(self.data['timestamp'], self.data['battery_voltage'], label='Battery Voltage', color='blue')
plt.scatter(last_points_100_df['timestamp'], last_points_100_df['battery_voltage'], color='green', marker='o', label='100% SoC Points')
#plt.scatter(last_points_0_df['timestamp'], last_points_0_df['battery_voltage'], color='red', marker='x', label='0% SoC Points')
plt.xlabel('Timestamp')
plt.ylabel('Voltage (V)')
plt.legend()
plt.title('Battery Voltage over Time')
plt.subplot(4, 1, 2)
plt.plot(self.data['timestamp'], self.data['battery_current'], label='Battery Current', color='orange')
plt.scatter(last_points_100_df['timestamp'], last_points_100_df['battery_current'], color='green', marker='o', label='100% SoC Points')
#plt.scatter(last_points_0_df['timestamp'], last_points_0_df['battery_current'], color='red', marker='x', label='0% SoC Points')
plt.xlabel('Timestamp')
plt.ylabel('Current (A)')
plt.legend()
plt.title('Battery Current over Time')
plt.subplot(4, 1, 3)
plt.plot(soc_df['timestamp'], soc_df['calculated_soc'], label='SoC', color='purple')
plt.xlabel('Timestamp')
plt.ylabel('SoC (%)')
plt.legend()
plt.title('State of Charge (SoC) over Time')
# plt.subplot(4, 1, 4)
# plt.plot(soh_df['timestamp'], soh_df['soh'], label='SoH', color='brown')
# plt.xlabel('Timestamp')
# plt.ylabel('SoH (%)')
# plt.legend()
# plt.title('State of Health (SoH) over Time')
plt.tight_layout()
plt.show()
if __name__ == '__main__':
# MariaDB Verbindungsdetails
# Parameter festlegen
voltage_high_threshold = 55.4 # 100% SoC
voltage_low_threshold = 46.5 # 0% SoC
current_low_threshold = 2 # Niedriger Strom für beide Zustände
gap = 30 # Zeitlücke in Minuten zum Gruppieren von Maxima/Minima
bat_capacity = 33 * 1000 / 48
# Zeitpunkt X definieren
zeitpunkt_x = (datetime.now() - timedelta(weeks=100)).strftime('%Y-%m-%d %H:%M:%S')
# BatteryDataProcessor instanziieren und verwenden
processor = BatteryDataProcessor(config, voltage_high_threshold, voltage_low_threshold, current_low_threshold, gap,bat_capacity)
processor.connect_db()
processor.fetch_data(zeitpunkt_x)
processor.process_data()
last_points_100_df, last_points_0_df = processor.find_soc_points()
soc_df, integration_results = processor.calculate_resetting_soc(last_points_100_df, last_points_0_df)
#soh_df = processor.calculate_soh(integration_results)
processor.update_database_with_soc(soc_df)
processor.plot_data(last_points_100_df, last_points_0_df, soc_df)
processor.disconnect_db()