2024-12-29 18:42:49 +01:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import pendulum
|
|
|
|
import pytest
|
|
|
|
from pydantic import Field, ValidationError
|
|
|
|
|
|
|
|
from akkudoktoreos.core.pydantic import (
|
|
|
|
PydanticBaseModel,
|
|
|
|
PydanticDateTimeData,
|
|
|
|
PydanticDateTimeDataFrame,
|
|
|
|
PydanticDateTimeSeries,
|
2025-04-05 13:08:12 +02:00
|
|
|
PydanticModelNestedValueMixin,
|
2024-12-29 18:42:49 +01:00
|
|
|
)
|
|
|
|
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
|
|
|
|
|
|
|
|
|
|
|
class PydanticTestModel(PydanticBaseModel):
|
|
|
|
datetime_field: pendulum.DateTime = Field(
|
|
|
|
..., description="A datetime field with pendulum support."
|
|
|
|
)
|
|
|
|
optional_field: Optional[str] = Field(default=None, description="An optional field.")
|
|
|
|
|
|
|
|
|
2025-04-05 13:08:12 +02:00
|
|
|
class Address(PydanticBaseModel):
|
|
|
|
city: Optional[str] = None
|
|
|
|
postal_code: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
class User(PydanticBaseModel):
|
|
|
|
name: str
|
|
|
|
addresses: Optional[list[Address]] = None
|
|
|
|
settings: Optional[dict[str, str]] = None
|
|
|
|
|
|
|
|
|
|
|
|
class TestPydanticModelNestedValueMixin:
|
|
|
|
"""Umbrella test class to group all test cases for `PydanticModelNestedValueMixin`."""
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def user_instance(self):
|
|
|
|
"""Fixture to initialize a sample User instance."""
|
|
|
|
return User(name="Alice", addresses=None, settings=None)
|
|
|
|
|
|
|
|
def test_get_key_types_for_simple_field(self):
|
|
|
|
"""Test _get_key_types for a simple string field."""
|
|
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "name")
|
|
|
|
assert key_types == [str], f"Expected [str], got {key_types}"
|
|
|
|
|
|
|
|
def test_get_key_types_for_list_of_models(self):
|
|
|
|
"""Test _get_key_types for a list of Address models."""
|
|
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "addresses")
|
|
|
|
assert key_types == [list, Address], f"Expected [list, Address], got {key_types}"
|
|
|
|
|
|
|
|
def test_get_key_types_for_dict_field(self):
|
|
|
|
"""Test _get_key_types for a dictionary field."""
|
|
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(User, "settings")
|
|
|
|
assert key_types == [dict, str], f"Expected [dict, str], got {key_types}"
|
|
|
|
|
|
|
|
def test_get_key_types_for_optional_field(self):
|
|
|
|
"""Test _get_key_types correctly handles Optional fields."""
|
|
|
|
key_types = PydanticModelNestedValueMixin._get_key_types(Address, "city")
|
|
|
|
assert key_types == [str], f"Expected [str], got {key_types}"
|
|
|
|
|
|
|
|
def test_get_key_types_for_non_existent_field(self):
|
|
|
|
"""Test _get_key_types raises an error for non-existent field."""
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
PydanticModelNestedValueMixin._get_key_types(User, "unknown_field")
|
|
|
|
|
|
|
|
def test_set_nested_value_in_model(self, user_instance):
|
|
|
|
"""Test setting nested value in a model field (Address -> city)."""
|
|
|
|
assert user_instance.addresses is None
|
|
|
|
|
|
|
|
user_instance.set_nested_value("addresses/0/city", "New York")
|
|
|
|
|
|
|
|
assert user_instance.addresses is not None
|
|
|
|
assert user_instance.addresses[0].city == "New York", "The city should be set to 'New York'"
|
|
|
|
|
|
|
|
def test_set_nested_value_in_dict(self, user_instance):
|
|
|
|
"""Test setting nested value in a dictionary field (settings -> theme)."""
|
|
|
|
assert user_instance.settings is None
|
|
|
|
|
|
|
|
user_instance.set_nested_value("settings/theme", "dark")
|
|
|
|
|
|
|
|
assert user_instance.settings is not None
|
|
|
|
assert user_instance.settings["theme"] == "dark", "The theme should be set to 'dark'"
|
|
|
|
|
|
|
|
def test_set_nested_value_in_list(self, user_instance):
|
|
|
|
"""Test setting nested value in a list of models (addresses -> 1 -> city)."""
|
|
|
|
user_instance.set_nested_value("addresses/1/city", "Los Angeles")
|
|
|
|
|
|
|
|
# Check if the city in the second address is set correctly
|
|
|
|
assert user_instance.addresses[1].city == "Los Angeles", (
|
|
|
|
"The city at index 1 should be set to 'Los Angeles'"
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_set_nested_value_in_optional_field(self, user_instance):
|
|
|
|
"""Test setting value in an Optional field (addresses)."""
|
|
|
|
user_instance.set_nested_value("addresses/0", Address(city="Chicago"))
|
|
|
|
|
|
|
|
# Check if the first address is set correctly
|
|
|
|
assert user_instance.addresses is not None
|
|
|
|
assert user_instance.addresses[0].city == "Chicago", "The city should be set to 'Chicago'"
|
|
|
|
|
|
|
|
def test_set_nested_value_with_empty_list(self):
|
|
|
|
"""Test setting value in an empty list of models."""
|
|
|
|
user = User(name="Bob", addresses=[])
|
|
|
|
user.set_nested_value("addresses/0/city", "Seattle")
|
|
|
|
|
|
|
|
assert user.addresses is not None
|
|
|
|
assert user.addresses[0].city == "Seattle", (
|
|
|
|
"The first address should have the city 'Seattle'"
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_set_nested_value_with_missing_key_in_dict(self, user_instance):
|
|
|
|
"""Test setting value in a dict when the key does not exist."""
|
|
|
|
user_instance.set_nested_value("settings/language", "English")
|
|
|
|
|
|
|
|
assert user_instance.settings["language"] == "English", (
|
|
|
|
"The language setting should be 'English'"
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_set_nested_value_for_non_existent_field(self):
|
|
|
|
"""Test attempting to set value for a non-existent field."""
|
|
|
|
user = User(name="John")
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
user.set_nested_value("non_existent_field", "Some Value")
|
|
|
|
|
|
|
|
def test_set_nested_value_with_invalid_type(self, user_instance):
|
|
|
|
"""Test setting value with an invalid type."""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
user_instance.set_nested_value(
|
|
|
|
"addresses/0/city", 1234
|
|
|
|
) # city should be a string, not an integer
|
|
|
|
|
|
|
|
def test_set_nested_value_with_model_initialization(self):
|
|
|
|
"""Test setting a value in a model that should initialize a missing model."""
|
|
|
|
user = User(name="James", addresses=None)
|
|
|
|
user.set_nested_value("addresses/0/city", "Boston")
|
|
|
|
|
|
|
|
assert user.addresses is not None
|
|
|
|
assert user.addresses[0].city == "Boston", "The city should be set to 'Boston'"
|
|
|
|
assert isinstance(user.addresses[0], Address), (
|
|
|
|
"The first address should be an instance of Address"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-12-29 18:42:49 +01:00
|
|
|
class TestPydanticBaseModel:
|
|
|
|
def test_valid_pendulum_datetime(self):
|
|
|
|
dt = pendulum.now()
|
|
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
|
|
assert model.datetime_field == dt
|
|
|
|
|
|
|
|
def test_invalid_datetime_string(self):
|
|
|
|
with pytest.raises(ValidationError, match="Input should be an instance of DateTime"):
|
|
|
|
PydanticTestModel(datetime_field="invalid_datetime")
|
|
|
|
|
|
|
|
def test_iso8601_serialization(self):
|
|
|
|
dt = pendulum.datetime(2024, 12, 21, 15, 0, 0)
|
|
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
|
|
serialized = model.to_dict()
|
|
|
|
expected_dt = to_datetime(dt)
|
|
|
|
result_dt = to_datetime(serialized["datetime_field"])
|
|
|
|
assert compare_datetimes(result_dt, expected_dt)
|
|
|
|
|
|
|
|
def test_reset_to_defaults(self):
|
|
|
|
dt = pendulum.now()
|
|
|
|
model = PydanticTestModel(datetime_field=dt, optional_field="some value")
|
|
|
|
model.reset_to_defaults()
|
|
|
|
assert model.datetime_field == dt
|
|
|
|
assert model.optional_field is None
|
|
|
|
|
|
|
|
def test_from_dict_and_to_dict(self):
|
|
|
|
dt = pendulum.now()
|
|
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
|
|
data = model.to_dict()
|
|
|
|
restored_model = PydanticTestModel.from_dict(data)
|
|
|
|
assert restored_model.datetime_field == dt
|
|
|
|
|
|
|
|
def test_to_json_and_from_json(self):
|
|
|
|
dt = pendulum.now()
|
|
|
|
model = PydanticTestModel(datetime_field=dt)
|
|
|
|
json_data = model.to_json()
|
|
|
|
restored_model = PydanticTestModel.from_json(json_data)
|
|
|
|
assert restored_model.datetime_field == dt
|
|
|
|
|
|
|
|
|
|
|
|
class TestPydanticDateTimeData:
|
|
|
|
def test_valid_list_lengths(self):
|
|
|
|
data = {
|
|
|
|
"timestamps": ["2024-12-21T15:00:00+00:00"],
|
|
|
|
"values": [100],
|
|
|
|
}
|
|
|
|
model = PydanticDateTimeData(root=data)
|
|
|
|
assert pendulum.parse(model.root["timestamps"][0]) == pendulum.parse(
|
|
|
|
"2024-12-21T15:00:00+00:00"
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_invalid_list_lengths(self):
|
|
|
|
data = {
|
|
|
|
"timestamps": ["2024-12-21T15:00:00+00:00"],
|
|
|
|
"values": [100, 200],
|
|
|
|
}
|
|
|
|
with pytest.raises(
|
|
|
|
ValidationError, match="All lists in the dictionary must have the same length"
|
|
|
|
):
|
|
|
|
PydanticDateTimeData(root=data)
|
|
|
|
|
|
|
|
|
|
|
|
class TestPydanticDateTimeDataFrame:
|
|
|
|
def test_valid_dataframe(self):
|
|
|
|
df = pd.DataFrame(
|
|
|
|
{
|
|
|
|
"value": [100, 200],
|
|
|
|
},
|
|
|
|
index=pd.to_datetime(["2024-12-21", "2024-12-22"]),
|
|
|
|
)
|
|
|
|
model = PydanticDateTimeDataFrame.from_dataframe(df)
|
|
|
|
result = model.to_dataframe()
|
|
|
|
|
|
|
|
# Check index
|
|
|
|
assert len(result.index) == len(df.index)
|
|
|
|
for i, dt in enumerate(df.index):
|
|
|
|
expected_dt = to_datetime(dt)
|
|
|
|
result_dt = to_datetime(result.index[i])
|
|
|
|
assert compare_datetimes(result_dt, expected_dt).equal
|
|
|
|
|
|
|
|
|
|
|
|
class TestPydanticDateTimeSeries:
|
|
|
|
def test_valid_series(self):
|
|
|
|
series = pd.Series([100, 200], index=pd.to_datetime(["2024-12-21", "2024-12-22"]))
|
|
|
|
model = PydanticDateTimeSeries.from_series(series)
|
|
|
|
result = model.to_series()
|
|
|
|
|
|
|
|
# Check index
|
|
|
|
assert len(result.index) == len(series.index)
|
|
|
|
for i, dt in enumerate(series.index):
|
|
|
|
expected_dt = to_datetime(dt)
|
|
|
|
result_dt = to_datetime(result.index[i])
|
|
|
|
assert compare_datetimes(result_dt, expected_dt).equal
|