EOS/tests/test_pydantic.py
Bobby Noelte 0bda5ba4cc
EOSdash: Improve PV forecast configuration. (#500)
* Allow to configure planes and configuration values of planes separatedly.

Make single configuration values for planes explicitly available for configuration.
Still allows to also configure a plane by a whole plane value struct.

* Enhance admin page by file import and export of the EOS configuration

The actual EOS configuration can now be exported to the EOSdash server.
From there it can be also imported. For security reasons only import and export
from/ to a predefined directory on the EOSdash server is possible.

* Improve handling of nested value pathes in pydantic models.

Added separate methods for nested path access (get_nested_value, set_nested_value).
On value setting the missing fields along the nested path are now added automatically
and initialized with default values. Nested path access was before restricted to the
EOS configuration and is now part of the pydantic base model.

* Makefile

Add new target to run rests as CI does on Github. Improve target docs.

* Datetimeutil tests

Prolong acceptable time difference for comparison of approximately equal times in tests.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-04-05 13:08:12 +02:00

241 lines
9.3 KiB
Python

from typing import Optional
import pandas as pd
import pendulum
import pytest
from pydantic import Field, ValidationError
from akkudoktoreos.core.pydantic import (
PydanticBaseModel,
PydanticDateTimeData,
PydanticDateTimeDataFrame,
PydanticDateTimeSeries,
PydanticModelNestedValueMixin,
)
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
class PydanticTestModel(PydanticBaseModel):
datetime_field: pendulum.DateTime = Field(
..., description="A datetime field with pendulum support."
)
optional_field: Optional[str] = Field(default=None, description="An optional field.")
class Address(PydanticBaseModel):
city: Optional[str] = None
postal_code: Optional[str] = None
class User(PydanticBaseModel):
name: str
addresses: Optional[list[Address]] = None
settings: Optional[dict[str, str]] = None
class TestPydanticModelNestedValueMixin:
"""Umbrella test class to group all test cases for `PydanticModelNestedValueMixin`."""
@pytest.fixture
def user_instance(self):
"""Fixture to initialize a sample User instance."""
return User(name="Alice", addresses=None, settings=None)
def test_get_key_types_for_simple_field(self):
"""Test _get_key_types for a simple string field."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "name")
assert key_types == [str], f"Expected [str], got {key_types}"
def test_get_key_types_for_list_of_models(self):
"""Test _get_key_types for a list of Address models."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "addresses")
assert key_types == [list, Address], f"Expected [list, Address], got {key_types}"
def test_get_key_types_for_dict_field(self):
"""Test _get_key_types for a dictionary field."""
key_types = PydanticModelNestedValueMixin._get_key_types(User, "settings")
assert key_types == [dict, str], f"Expected [dict, str], got {key_types}"
def test_get_key_types_for_optional_field(self):
"""Test _get_key_types correctly handles Optional fields."""
key_types = PydanticModelNestedValueMixin._get_key_types(Address, "city")
assert key_types == [str], f"Expected [str], got {key_types}"
def test_get_key_types_for_non_existent_field(self):
"""Test _get_key_types raises an error for non-existent field."""
with pytest.raises(TypeError):
PydanticModelNestedValueMixin._get_key_types(User, "unknown_field")
def test_set_nested_value_in_model(self, user_instance):
"""Test setting nested value in a model field (Address -> city)."""
assert user_instance.addresses is None
user_instance.set_nested_value("addresses/0/city", "New York")
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "New York", "The city should be set to 'New York'"
def test_set_nested_value_in_dict(self, user_instance):
"""Test setting nested value in a dictionary field (settings -> theme)."""
assert user_instance.settings is None
user_instance.set_nested_value("settings/theme", "dark")
assert user_instance.settings is not None
assert user_instance.settings["theme"] == "dark", "The theme should be set to 'dark'"
def test_set_nested_value_in_list(self, user_instance):
"""Test setting nested value in a list of models (addresses -> 1 -> city)."""
user_instance.set_nested_value("addresses/1/city", "Los Angeles")
# Check if the city in the second address is set correctly
assert user_instance.addresses[1].city == "Los Angeles", (
"The city at index 1 should be set to 'Los Angeles'"
)
def test_set_nested_value_in_optional_field(self, user_instance):
"""Test setting value in an Optional field (addresses)."""
user_instance.set_nested_value("addresses/0", Address(city="Chicago"))
# Check if the first address is set correctly
assert user_instance.addresses is not None
assert user_instance.addresses[0].city == "Chicago", "The city should be set to 'Chicago'"
def test_set_nested_value_with_empty_list(self):
"""Test setting value in an empty list of models."""
user = User(name="Bob", addresses=[])
user.set_nested_value("addresses/0/city", "Seattle")
assert user.addresses is not None
assert user.addresses[0].city == "Seattle", (
"The first address should have the city 'Seattle'"
)
def test_set_nested_value_with_missing_key_in_dict(self, user_instance):
"""Test setting value in a dict when the key does not exist."""
user_instance.set_nested_value("settings/language", "English")
assert user_instance.settings["language"] == "English", (
"The language setting should be 'English'"
)
def test_set_nested_value_for_non_existent_field(self):
"""Test attempting to set value for a non-existent field."""
user = User(name="John")
with pytest.raises(ValueError):
user.set_nested_value("non_existent_field", "Some Value")
def test_set_nested_value_with_invalid_type(self, user_instance):
"""Test setting value with an invalid type."""
with pytest.raises(ValueError):
user_instance.set_nested_value(
"addresses/0/city", 1234
) # city should be a string, not an integer
def test_set_nested_value_with_model_initialization(self):
"""Test setting a value in a model that should initialize a missing model."""
user = User(name="James", addresses=None)
user.set_nested_value("addresses/0/city", "Boston")
assert user.addresses is not None
assert user.addresses[0].city == "Boston", "The city should be set to 'Boston'"
assert isinstance(user.addresses[0], Address), (
"The first address should be an instance of Address"
)
class TestPydanticBaseModel:
def test_valid_pendulum_datetime(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
assert model.datetime_field == dt
def test_invalid_datetime_string(self):
with pytest.raises(ValidationError, match="Input should be an instance of DateTime"):
PydanticTestModel(datetime_field="invalid_datetime")
def test_iso8601_serialization(self):
dt = pendulum.datetime(2024, 12, 21, 15, 0, 0)
model = PydanticTestModel(datetime_field=dt)
serialized = model.to_dict()
expected_dt = to_datetime(dt)
result_dt = to_datetime(serialized["datetime_field"])
assert compare_datetimes(result_dt, expected_dt)
def test_reset_to_defaults(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt, optional_field="some value")
model.reset_to_defaults()
assert model.datetime_field == dt
assert model.optional_field is None
def test_from_dict_and_to_dict(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
data = model.to_dict()
restored_model = PydanticTestModel.from_dict(data)
assert restored_model.datetime_field == dt
def test_to_json_and_from_json(self):
dt = pendulum.now()
model = PydanticTestModel(datetime_field=dt)
json_data = model.to_json()
restored_model = PydanticTestModel.from_json(json_data)
assert restored_model.datetime_field == dt
class TestPydanticDateTimeData:
def test_valid_list_lengths(self):
data = {
"timestamps": ["2024-12-21T15:00:00+00:00"],
"values": [100],
}
model = PydanticDateTimeData(root=data)
assert pendulum.parse(model.root["timestamps"][0]) == pendulum.parse(
"2024-12-21T15:00:00+00:00"
)
def test_invalid_list_lengths(self):
data = {
"timestamps": ["2024-12-21T15:00:00+00:00"],
"values": [100, 200],
}
with pytest.raises(
ValidationError, match="All lists in the dictionary must have the same length"
):
PydanticDateTimeData(root=data)
class TestPydanticDateTimeDataFrame:
def test_valid_dataframe(self):
df = pd.DataFrame(
{
"value": [100, 200],
},
index=pd.to_datetime(["2024-12-21", "2024-12-22"]),
)
model = PydanticDateTimeDataFrame.from_dataframe(df)
result = model.to_dataframe()
# Check index
assert len(result.index) == len(df.index)
for i, dt in enumerate(df.index):
expected_dt = to_datetime(dt)
result_dt = to_datetime(result.index[i])
assert compare_datetimes(result_dt, expected_dt).equal
class TestPydanticDateTimeSeries:
def test_valid_series(self):
series = pd.Series([100, 200], index=pd.to_datetime(["2024-12-21", "2024-12-22"]))
model = PydanticDateTimeSeries.from_series(series)
result = model.to_series()
# Check index
assert len(result.index) == len(series.index)
for i, dt in enumerate(series.index):
expected_dt = to_datetime(dt)
result_dt = to_datetime(result.index[i])
assert compare_datetimes(result_dt, expected_dt).equal