2024-02-25 16:47:28 +01:00
|
|
|
from datetime import datetime
|
2024-10-05 21:26:31 +02:00
|
|
|
from typing import Dict, List, Optional, Union
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-08-31 10:40:07 +02:00
|
|
|
import numpy as np
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-08-31 10:40:07 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def replace_nan_with_none(
|
|
|
|
data: Union[np.ndarray, dict, list, float],
|
|
|
|
) -> Union[List, dict, float, None]:
|
|
|
|
if data is None:
|
|
|
|
return None
|
|
|
|
if isinstance(data, np.ndarray):
|
|
|
|
# Use numpy vectorized approach
|
|
|
|
return np.where(np.isnan(data), None, data).tolist()
|
|
|
|
elif isinstance(data, dict):
|
2024-08-31 10:40:07 +02:00
|
|
|
return {key: replace_nan_with_none(value) for key, value in data.items()}
|
|
|
|
elif isinstance(data, list):
|
|
|
|
return [replace_nan_with_none(element) for element in data]
|
2024-09-30 10:32:04 +02:00
|
|
|
elif isinstance(data, (float, np.floating)) and np.isnan(data):
|
2024-08-31 10:40:07 +02:00
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return data
|
|
|
|
|
2024-02-18 15:07:20 +01:00
|
|
|
|
2024-02-18 14:32:27 +01:00
|
|
|
class EnergieManagementSystem:
|
2024-10-03 11:05:44 +02:00
|
|
|
def __init__(
|
|
|
|
self,
|
2024-10-05 21:26:31 +02:00
|
|
|
pv_prognose_wh: Optional[np.ndarray] = None,
|
|
|
|
strompreis_euro_pro_wh: Optional[np.ndarray] = None,
|
|
|
|
einspeiseverguetung_euro_pro_wh: Optional[np.ndarray] = None,
|
|
|
|
eauto: Optional[object] = None,
|
|
|
|
gesamtlast: Optional[np.ndarray] = None,
|
|
|
|
haushaltsgeraet: Optional[object] = None,
|
|
|
|
wechselrichter: Optional[object] = None,
|
2024-10-03 11:05:44 +02:00
|
|
|
):
|
2024-05-01 14:38:16 +02:00
|
|
|
self.akku = wechselrichter.akku
|
2024-03-25 14:40:48 +01:00
|
|
|
self.gesamtlast = gesamtlast
|
2024-02-18 14:32:27 +01:00
|
|
|
self.pv_prognose_wh = pv_prognose_wh
|
2024-10-05 21:26:31 +02:00
|
|
|
self.strompreis_euro_pro_wh = strompreis_euro_pro_wh
|
|
|
|
self.einspeiseverguetung_euro_pro_wh = einspeiseverguetung_euro_pro_wh
|
2024-03-25 14:40:48 +01:00
|
|
|
self.eauto = eauto
|
2024-04-02 16:46:16 +02:00
|
|
|
self.haushaltsgeraet = haushaltsgeraet
|
2024-05-01 14:38:16 +02:00
|
|
|
self.wechselrichter = wechselrichter
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def set_akku_discharge_hours(self, ds: List[int]) -> None:
|
2024-02-18 15:53:29 +01:00
|
|
|
self.akku.set_discharge_per_hour(ds)
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def set_eauto_charge_hours(self, ds: List[int]) -> None:
|
2024-03-25 14:40:48 +01:00
|
|
|
self.eauto.set_charge_per_hour(ds)
|
2024-04-02 16:46:16 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def set_haushaltsgeraet_start(
|
|
|
|
self, ds: List[int], global_start_hour: int = 0
|
|
|
|
) -> None:
|
2024-10-03 11:05:44 +02:00
|
|
|
self.haushaltsgeraet.set_startzeitpunkt(ds, global_start_hour=global_start_hour)
|
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def reset(self) -> None:
|
2024-03-25 14:40:48 +01:00
|
|
|
self.eauto.reset()
|
2024-02-18 15:53:29 +01:00
|
|
|
self.akku.reset()
|
2024-02-25 16:47:28 +01:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def simuliere_ab_jetzt(self) -> dict:
|
2024-02-25 16:47:28 +01:00
|
|
|
jetzt = datetime.now()
|
|
|
|
start_stunde = jetzt.hour
|
|
|
|
return self.simuliere(start_stunde)
|
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
def simuliere(self, start_stunde: int) -> dict:
|
|
|
|
# Ensure arrays have the same length
|
2024-07-30 10:51:26 +02:00
|
|
|
lastkurve_wh = self.gesamtlast
|
2024-10-03 11:05:44 +02:00
|
|
|
assert (
|
|
|
|
len(lastkurve_wh)
|
|
|
|
== len(self.pv_prognose_wh)
|
|
|
|
== len(self.strompreis_euro_pro_wh)
|
2024-10-05 21:26:31 +02:00
|
|
|
), f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
|
2024-04-01 13:16:24 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Optimized total hours calculation
|
|
|
|
ende = len(lastkurve_wh)
|
2024-10-03 11:05:44 +02:00
|
|
|
total_hours = ende - start_stunde
|
2024-09-30 10:32:04 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Pre-allocate arrays for the results, optimized for speed
|
|
|
|
last_wh_pro_stunde = np.zeros(total_hours)
|
|
|
|
netzeinspeisung_wh_pro_stunde = np.zeros(total_hours)
|
|
|
|
netzbezug_wh_pro_stunde = np.zeros(total_hours)
|
|
|
|
kosten_euro_pro_stunde = np.zeros(total_hours)
|
|
|
|
einnahmen_euro_pro_stunde = np.zeros(total_hours)
|
|
|
|
akku_soc_pro_stunde = np.zeros(total_hours)
|
|
|
|
eauto_soc_pro_stunde = np.zeros(total_hours)
|
|
|
|
verluste_wh_pro_stunde = np.zeros(total_hours)
|
|
|
|
haushaltsgeraet_wh_pro_stunde = np.zeros(total_hours)
|
|
|
|
|
|
|
|
# Set initial state
|
|
|
|
akku_soc_pro_stunde[0] = self.akku.ladezustand_in_prozent()
|
2024-09-30 10:32:04 +02:00
|
|
|
if self.eauto:
|
2024-10-05 21:26:31 +02:00
|
|
|
eauto_soc_pro_stunde[0] = self.eauto.ladezustand_in_prozent()
|
2024-09-30 10:32:04 +02:00
|
|
|
|
|
|
|
for stunde in range(start_stunde + 1, ende):
|
2024-10-03 11:05:44 +02:00
|
|
|
stunde_since_now = stunde - start_stunde
|
2024-09-30 10:32:04 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Accumulate loads and PV generation
|
2024-09-30 10:32:04 +02:00
|
|
|
verbrauch = self.gesamtlast[stunde]
|
2024-10-05 21:26:31 +02:00
|
|
|
if self.haushaltsgeraet:
|
|
|
|
verbrauch += self.haushaltsgeraet.get_last_fuer_stunde(stunde)
|
|
|
|
haushaltsgeraet_wh_pro_stunde[stunde_since_now] = verbrauch
|
2024-09-30 10:32:04 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# E-Auto handling
|
2024-04-02 16:46:16 +02:00
|
|
|
if self.eauto:
|
2024-10-03 11:05:44 +02:00
|
|
|
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(
|
|
|
|
None, stunde
|
|
|
|
)
|
2024-09-30 10:32:04 +02:00
|
|
|
verbrauch += geladene_menge_eauto
|
|
|
|
verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
2024-10-03 11:05:44 +02:00
|
|
|
eauto_soc_pro_stunde[stunde_since_now] = (
|
|
|
|
self.eauto.ladezustand_in_prozent()
|
|
|
|
)
|
2024-02-18 15:07:20 +01:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Process inverter logic
|
|
|
|
erzeugung = self.pv_prognose_wh[stunde]
|
2024-10-03 11:05:44 +02:00
|
|
|
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (
|
|
|
|
self.wechselrichter.energie_verarbeiten(erzeugung, verbrauch, stunde)
|
|
|
|
)
|
2024-09-30 10:32:04 +02:00
|
|
|
netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
|
|
|
|
netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
|
|
|
|
verluste_wh_pro_stunde[stunde_since_now] += verluste
|
2024-10-01 06:51:06 +02:00
|
|
|
last_wh_pro_stunde[stunde_since_now] = verbrauch
|
2024-10-05 21:26:31 +02:00
|
|
|
|
|
|
|
# Financial calculations
|
|
|
|
kosten_euro_pro_stunde[stunde_since_now] = (
|
|
|
|
netzbezug * self.strompreis_euro_pro_wh[stunde]
|
|
|
|
)
|
2024-10-03 11:05:44 +02:00
|
|
|
einnahmen_euro_pro_stunde[stunde_since_now] = (
|
|
|
|
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh[stunde]
|
|
|
|
)
|
2024-09-30 10:32:04 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Akku SOC tracking
|
2024-09-30 10:32:04 +02:00
|
|
|
akku_soc_pro_stunde[stunde_since_now] = self.akku.ladezustand_in_prozent()
|
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Total cost and return
|
|
|
|
gesamtkosten_euro = np.sum(kosten_euro_pro_stunde) - np.sum(
|
2024-10-03 11:05:44 +02:00
|
|
|
einnahmen_euro_pro_stunde
|
|
|
|
)
|
2024-02-25 16:47:28 +01:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
# Prepare output dictionary
|
|
|
|
out: Dict[str, Union[np.ndarray, float]] = {
|
2024-10-03 11:05:44 +02:00
|
|
|
"Last_Wh_pro_Stunde": last_wh_pro_stunde,
|
|
|
|
"Netzeinspeisung_Wh_pro_Stunde": netzeinspeisung_wh_pro_stunde,
|
|
|
|
"Netzbezug_Wh_pro_Stunde": netzbezug_wh_pro_stunde,
|
|
|
|
"Kosten_Euro_pro_Stunde": kosten_euro_pro_stunde,
|
|
|
|
"akku_soc_pro_stunde": akku_soc_pro_stunde,
|
|
|
|
"Einnahmen_Euro_pro_Stunde": einnahmen_euro_pro_stunde,
|
|
|
|
"Gesamtbilanz_Euro": gesamtkosten_euro,
|
|
|
|
"E-Auto_SoC_pro_Stunde": eauto_soc_pro_stunde,
|
2024-10-05 21:26:31 +02:00
|
|
|
"Gesamteinnahmen_Euro": np.sum(einnahmen_euro_pro_stunde),
|
|
|
|
"Gesamtkosten_Euro": np.sum(kosten_euro_pro_stunde),
|
2024-09-30 10:32:04 +02:00
|
|
|
"Verluste_Pro_Stunde": verluste_wh_pro_stunde,
|
2024-10-05 21:26:31 +02:00
|
|
|
"Gesamt_Verluste": np.sum(verluste_wh_pro_stunde),
|
2024-10-03 11:05:44 +02:00
|
|
|
"Haushaltsgeraet_wh_pro_stunde": haushaltsgeraet_wh_pro_stunde,
|
2024-02-18 14:32:27 +01:00
|
|
|
}
|
2024-09-30 10:32:04 +02:00
|
|
|
|
2024-10-05 21:26:31 +02:00
|
|
|
return replace_nan_with_none(out)
|