EOS/modules/class_pv_forecast.py

248 lines
9.0 KiB
Python
Raw Normal View History

2024-10-03 11:05:44 +02:00
import hashlib
import json
import os
from datetime import datetime
2024-02-16 12:57:09 +01:00
from pprint import pprint
2024-10-03 11:05:44 +02:00
import numpy as np
import pandas as pd
2024-10-03 11:05:44 +02:00
import requests
from dateutil import parser
2024-02-16 12:57:09 +01:00
class ForecastData:
2024-10-03 11:05:44 +02:00
def __init__(
self,
date_time,
dc_power,
ac_power,
windspeed_10m=None,
temperature=None,
ac_power_measurement=None,
):
self.date_time = date_time
self.dc_power = dc_power
self.ac_power = ac_power
self.windspeed_10m = windspeed_10m
self.temperature = temperature
self.ac_power_measurement = ac_power_measurement
def get_date_time(self):
return self.date_time
2024-02-16 12:57:09 +01:00
def get_dc_power(self):
return self.dc_power
2024-02-16 12:57:09 +01:00
def ac_power_measurement(self):
return self.ac_power_measurement
def get_ac_power(self):
if self.ac_power_measurement is not None:
return self.ac_power_measurement
else:
return self.ac_power
2024-02-16 12:57:09 +01:00
def get_windspeed_10m(self):
return self.windspeed_10m
2024-02-16 12:57:09 +01:00
def get_temperature(self):
return self.temperature
2024-02-16 12:57:09 +01:00
2024-10-03 11:05:44 +02:00
class PVForecast:
2024-10-03 11:05:44 +02:00
def __init__(self, filepath=None, url=None, cache_dir="cache", prediction_hours=48):
2024-02-16 12:57:09 +01:00
self.meta = {}
self.forecast_data = []
self.cache_dir = cache_dir
self.prediction_hours = prediction_hours
self.current_measurement = None
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
if filepath:
self.load_data_from_file(filepath)
elif url:
self.load_data_with_caching(url)
if len(self.forecast_data) < self.prediction_hours:
2024-10-03 11:05:44 +02:00
raise ValueError(
f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt."
)
def update_ac_power_measurement(
self, date_time=None, ac_power_measurement=None
) -> bool:
found = False
input_date_hour = date_time.replace(minute=0, second=0, microsecond=0)
for forecast in self.forecast_data:
2024-10-03 11:05:44 +02:00
forecast_date_hour = parser.parse(forecast.date_time).replace(
minute=0, second=0, microsecond=0
)
if forecast_date_hour == input_date_hour:
forecast.ac_power_measurement = ac_power_measurement
found = True
break
return found
2024-02-16 12:57:09 +01:00
def process_data(self, data):
2024-10-03 11:05:44 +02:00
self.meta = data.get("meta", {})
all_values = data.get("values", [])
for i in range(
len(all_values[0])
): # Annahme, dass alle Listen gleich lang sind
sum_dc_power = sum(values[i]["dcPower"] for values in all_values)
sum_ac_power = sum(values[i]["power"] for values in all_values)
# Zeige die ursprünglichen und berechneten Zeitstempel an
2024-10-03 11:05:44 +02:00
original_datetime = all_values[0][i].get("datetime")
# print(original_datetime," ",sum_dc_power," ",all_values[0][i]['dcPower'])
dt = datetime.strptime(original_datetime, "%Y-%m-%dT%H:%M:%S.%f%z")
dt = dt.replace(tzinfo=None)
2024-10-03 11:05:44 +02:00
# iso_datetime = parser.parse(original_datetime).isoformat() # Konvertiere zu ISO-Format
# print()
# Optional: 2 Stunden abziehen, um die Zeitanpassung zu testen
2024-10-03 11:05:44 +02:00
# adjusted_datetime = parser.parse(original_datetime) - timedelta(hours=2)
# print(f"Angepasste Zeitstempel: {adjusted_datetime.isoformat()}")
forecast = ForecastData(
date_time=dt, # Verwende angepassten Zeitstempel
dc_power=sum_dc_power,
ac_power=sum_ac_power,
2024-10-03 11:05:44 +02:00
windspeed_10m=all_values[0][i].get("windspeed_10m"),
temperature=all_values[0][i].get("temperature"),
)
self.forecast_data.append(forecast)
def load_data_from_file(self, filepath):
2024-10-03 11:05:44 +02:00
with open(filepath, "r") as file:
2024-02-16 12:57:09 +01:00
data = json.load(file)
self.process_data(data)
def load_data_from_url(self, url):
response = requests.get(url)
if response.status_code == 200:
data = response.json()
pprint(data)
self.process_data(data)
else:
2024-10-03 11:05:44 +02:00
print(
f"Failed to load data from {url}. Status Code: {response.status_code}"
)
self.load_data_from_url(url)
def load_data_with_caching(self, url):
date = datetime.now().strftime("%Y-%m-%d")
2024-10-03 11:05:44 +02:00
cache_file = os.path.join(
self.cache_dir, self.generate_cache_filename(url, date)
)
if os.path.exists(cache_file):
2024-10-03 11:05:44 +02:00
with open(cache_file, "r") as file:
data = json.load(file)
print("Loading data from cache.")
else:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
2024-10-03 11:05:44 +02:00
with open(cache_file, "w") as file:
json.dump(data, file)
print("Data fetched from URL and cached.")
else:
2024-10-03 11:05:44 +02:00
print(
f"Failed to load data from {url}. Status Code: {response.status_code}"
)
return
self.process_data(data)
def generate_cache_filename(self, url, date):
2024-10-03 11:05:44 +02:00
cache_key = hashlib.sha256(f"{url}{date}".encode("utf-8")).hexdigest()
return f"cache_{cache_key}.json"
2024-02-16 12:57:09 +01:00
def get_forecast_data(self):
return self.forecast_data
2024-02-18 21:28:02 +01:00
def get_temperature_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
2024-10-03 11:05:44 +02:00
daily_forecast_obj = [
data
for data in self.forecast_data
if parser.parse(data.get_date_time()).date() == input_date.date()
]
2024-02-18 21:28:02 +01:00
daily_forecast = []
for d in daily_forecast_obj:
daily_forecast.append(d.get_temperature())
2024-10-03 11:05:44 +02:00
2024-02-18 21:28:02 +01:00
return np.array(daily_forecast)
2024-02-18 14:32:27 +01:00
def get_pv_forecast_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
for data in self.forecast_data:
2024-10-03 11:05:44 +02:00
data_date = (
data.get_date_time().date()
) # parser.parse(data.get_date_time()).date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
2024-10-03 11:05:44 +02:00
print(data.get_date_time(), " ", data.get_ac_power())
ac_power_forecast = np.array(
[data.get_ac_power() for data in date_range_forecast]
)
return np.array(ac_power_forecast)[: self.prediction_hours]
def get_temperature_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
2024-10-03 11:05:44 +02:00
for data in self.forecast_data:
data_date = data.get_date_time().date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
2024-10-03 11:05:44 +02:00
temperature_forecast = [data.get_temperature() for data in date_range_forecast]
2024-10-03 11:05:44 +02:00
return np.array(temperature_forecast)[: self.prediction_hours]
def get_forecast_dataframe(self):
# Wandelt die Vorhersagedaten in ein Pandas DataFrame um
2024-10-03 11:05:44 +02:00
data = [
{
"date_time": f.get_date_time(),
"dc_power": f.get_dc_power(),
"ac_power": f.get_ac_power(),
"windspeed_10m": f.get_windspeed_10m(),
"temperature": f.get_temperature(),
}
for f in self.forecast_data
]
# Erstelle ein DataFrame
df = pd.DataFrame(data)
return df
def print_ac_power_and_measurement(self):
"""Druckt die DC-Leistung und den Messwert für jede Stunde."""
for forecast in self.forecast_data:
date_time = forecast.date_time
2024-10-03 11:05:44 +02:00
print(
f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, Messwert: {forecast.ac_power_measurement}, AC GET: {forecast.get_ac_power()}"
)
2024-02-16 12:57:09 +01:00
# Beispiel für die Verwendung der Klasse
2024-10-03 11:05:44 +02:00
if __name__ == "__main__":
forecast = PVForecast(
prediction_hours=24,
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m",
)
forecast.update_ac_power_measurement(
date_time=datetime.now(), ac_power_measurement=1000
)
forecast.print_ac_power_and_measurement()