2024-10-03 11:05:44 +02:00
|
|
|
import hashlib
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
from datetime import datetime
|
2024-02-16 12:57:09 +01:00
|
|
|
from pprint import pprint
|
2024-10-03 11:05:44 +02:00
|
|
|
|
|
|
|
import numpy as np
|
2024-08-30 11:49:44 +02:00
|
|
|
import pandas as pd
|
2024-10-03 11:05:44 +02:00
|
|
|
import requests
|
|
|
|
from dateutil import parser
|
2024-02-16 12:57:09 +01:00
|
|
|
|
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
class ForecastData:
|
2024-10-03 11:05:44 +02:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
date_time,
|
|
|
|
dc_power,
|
|
|
|
ac_power,
|
|
|
|
windspeed_10m=None,
|
|
|
|
temperature=None,
|
|
|
|
ac_power_measurement=None,
|
|
|
|
):
|
2024-02-25 15:12:10 +01:00
|
|
|
self.date_time = date_time
|
|
|
|
self.dc_power = dc_power
|
|
|
|
self.ac_power = ac_power
|
|
|
|
self.windspeed_10m = windspeed_10m
|
|
|
|
self.temperature = temperature
|
2024-08-30 11:49:44 +02:00
|
|
|
self.ac_power_measurement = ac_power_measurement
|
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def get_date_time(self):
|
|
|
|
return self.date_time
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def get_dc_power(self):
|
|
|
|
return self.dc_power
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-03-31 13:00:01 +02:00
|
|
|
def ac_power_measurement(self):
|
|
|
|
return self.ac_power_measurement
|
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def get_ac_power(self):
|
2024-08-30 11:49:44 +02:00
|
|
|
if self.ac_power_measurement is not None:
|
2024-03-31 13:00:01 +02:00
|
|
|
return self.ac_power_measurement
|
|
|
|
else:
|
|
|
|
return self.ac_power
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def get_windspeed_10m(self):
|
|
|
|
return self.windspeed_10m
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def get_temperature(self):
|
|
|
|
return self.temperature
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
class PVForecast:
|
2024-10-03 11:05:44 +02:00
|
|
|
def __init__(self, filepath=None, url=None, cache_dir="cache", prediction_hours=48):
|
2024-02-16 12:57:09 +01:00
|
|
|
self.meta = {}
|
|
|
|
self.forecast_data = []
|
2024-02-25 15:12:10 +01:00
|
|
|
self.cache_dir = cache_dir
|
2024-03-03 10:03:32 +01:00
|
|
|
self.prediction_hours = prediction_hours
|
2024-03-31 13:00:01 +02:00
|
|
|
self.current_measurement = None
|
2024-08-30 11:49:44 +02:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
if not os.path.exists(self.cache_dir):
|
|
|
|
os.makedirs(self.cache_dir)
|
|
|
|
if filepath:
|
|
|
|
self.load_data_from_file(filepath)
|
|
|
|
elif url:
|
|
|
|
self.load_data_with_caching(url)
|
2024-08-30 11:49:44 +02:00
|
|
|
|
2024-03-03 10:03:32 +01:00
|
|
|
if len(self.forecast_data) < self.prediction_hours:
|
2024-10-03 11:05:44 +02:00
|
|
|
raise ValueError(
|
|
|
|
f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt."
|
|
|
|
)
|
2024-03-03 10:03:32 +01:00
|
|
|
|
2024-10-03 11:05:44 +02:00
|
|
|
def update_ac_power_measurement(
|
|
|
|
self, date_time=None, ac_power_measurement=None
|
|
|
|
) -> bool:
|
2024-03-31 13:00:01 +02:00
|
|
|
found = False
|
2024-08-30 11:49:44 +02:00
|
|
|
input_date_hour = date_time.replace(minute=0, second=0, microsecond=0)
|
2024-03-31 13:00:01 +02:00
|
|
|
|
|
|
|
for forecast in self.forecast_data:
|
2024-10-03 11:05:44 +02:00
|
|
|
forecast_date_hour = parser.parse(forecast.date_time).replace(
|
|
|
|
minute=0, second=0, microsecond=0
|
|
|
|
)
|
2024-03-31 13:00:01 +02:00
|
|
|
if forecast_date_hour == input_date_hour:
|
|
|
|
forecast.ac_power_measurement = ac_power_measurement
|
|
|
|
found = True
|
|
|
|
break
|
2024-10-03 11:05:44 +02:00
|
|
|
return found
|
2024-02-16 12:57:09 +01:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
def process_data(self, data):
|
2024-10-03 11:05:44 +02:00
|
|
|
self.meta = data.get("meta", {})
|
|
|
|
all_values = data.get("values", [])
|
|
|
|
|
|
|
|
for i in range(
|
|
|
|
len(all_values[0])
|
|
|
|
): # Annahme, dass alle Listen gleich lang sind
|
|
|
|
sum_dc_power = sum(values[i]["dcPower"] for values in all_values)
|
|
|
|
sum_ac_power = sum(values[i]["power"] for values in all_values)
|
2024-08-30 11:49:44 +02:00
|
|
|
|
|
|
|
# Zeige die ursprünglichen und berechneten Zeitstempel an
|
2024-10-03 11:05:44 +02:00
|
|
|
original_datetime = all_values[0][i].get("datetime")
|
|
|
|
# print(original_datetime," ",sum_dc_power," ",all_values[0][i]['dcPower'])
|
2024-08-30 11:49:44 +02:00
|
|
|
dt = datetime.strptime(original_datetime, "%Y-%m-%dT%H:%M:%S.%f%z")
|
|
|
|
dt = dt.replace(tzinfo=None)
|
2024-10-03 11:05:44 +02:00
|
|
|
# iso_datetime = parser.parse(original_datetime).isoformat() # Konvertiere zu ISO-Format
|
|
|
|
# print()
|
2024-08-30 11:49:44 +02:00
|
|
|
# Optional: 2 Stunden abziehen, um die Zeitanpassung zu testen
|
2024-10-03 11:05:44 +02:00
|
|
|
# adjusted_datetime = parser.parse(original_datetime) - timedelta(hours=2)
|
|
|
|
# print(f"Angepasste Zeitstempel: {adjusted_datetime.isoformat()}")
|
2024-08-30 11:49:44 +02:00
|
|
|
|
2024-02-25 15:12:10 +01:00
|
|
|
forecast = ForecastData(
|
2024-08-30 11:49:44 +02:00
|
|
|
date_time=dt, # Verwende angepassten Zeitstempel
|
2024-03-08 14:22:11 +01:00
|
|
|
dc_power=sum_dc_power,
|
|
|
|
ac_power=sum_ac_power,
|
2024-10-03 11:05:44 +02:00
|
|
|
windspeed_10m=all_values[0][i].get("windspeed_10m"),
|
|
|
|
temperature=all_values[0][i].get("temperature"),
|
2024-02-25 15:12:10 +01:00
|
|
|
)
|
2024-03-08 14:22:11 +01:00
|
|
|
|
2024-08-30 11:49:44 +02:00
|
|
|
self.forecast_data.append(forecast)
|
2024-02-25 15:12:10 +01:00
|
|
|
|
|
|
|
def load_data_from_file(self, filepath):
|
2024-10-03 11:05:44 +02:00
|
|
|
with open(filepath, "r") as file:
|
2024-02-16 12:57:09 +01:00
|
|
|
data = json.load(file)
|
2024-02-25 15:12:10 +01:00
|
|
|
self.process_data(data)
|
|
|
|
|
|
|
|
def load_data_from_url(self, url):
|
|
|
|
response = requests.get(url)
|
|
|
|
if response.status_code == 200:
|
|
|
|
data = response.json()
|
|
|
|
pprint(data)
|
|
|
|
self.process_data(data)
|
|
|
|
else:
|
2024-10-03 11:05:44 +02:00
|
|
|
print(
|
|
|
|
f"Failed to load data from {url}. Status Code: {response.status_code}"
|
|
|
|
)
|
2024-02-25 15:12:10 +01:00
|
|
|
self.load_data_from_url(url)
|
|
|
|
|
|
|
|
def load_data_with_caching(self, url):
|
2024-08-30 11:49:44 +02:00
|
|
|
date = datetime.now().strftime("%Y-%m-%d")
|
2024-03-03 10:03:32 +01:00
|
|
|
|
2024-10-03 11:05:44 +02:00
|
|
|
cache_file = os.path.join(
|
|
|
|
self.cache_dir, self.generate_cache_filename(url, date)
|
|
|
|
)
|
2024-02-25 15:12:10 +01:00
|
|
|
if os.path.exists(cache_file):
|
2024-10-03 11:05:44 +02:00
|
|
|
with open(cache_file, "r") as file:
|
2024-02-25 15:12:10 +01:00
|
|
|
data = json.load(file)
|
|
|
|
print("Loading data from cache.")
|
|
|
|
else:
|
|
|
|
response = requests.get(url)
|
|
|
|
if response.status_code == 200:
|
|
|
|
data = response.json()
|
2024-10-03 11:05:44 +02:00
|
|
|
with open(cache_file, "w") as file:
|
2024-02-25 15:12:10 +01:00
|
|
|
json.dump(data, file)
|
|
|
|
print("Data fetched from URL and cached.")
|
|
|
|
else:
|
2024-10-03 11:05:44 +02:00
|
|
|
print(
|
|
|
|
f"Failed to load data from {url}. Status Code: {response.status_code}"
|
|
|
|
)
|
2024-02-25 15:12:10 +01:00
|
|
|
return
|
|
|
|
self.process_data(data)
|
|
|
|
|
2024-08-30 11:49:44 +02:00
|
|
|
def generate_cache_filename(self, url, date):
|
2024-10-03 11:05:44 +02:00
|
|
|
cache_key = hashlib.sha256(f"{url}{date}".encode("utf-8")).hexdigest()
|
2024-03-03 10:03:32 +01:00
|
|
|
return f"cache_{cache_key}.json"
|
2024-02-16 12:57:09 +01:00
|
|
|
|
|
|
|
def get_forecast_data(self):
|
|
|
|
return self.forecast_data
|
|
|
|
|
2024-02-18 21:28:02 +01:00
|
|
|
def get_temperature_forecast_for_date(self, input_date_str):
|
|
|
|
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
|
2024-10-03 11:05:44 +02:00
|
|
|
daily_forecast_obj = [
|
|
|
|
data
|
|
|
|
for data in self.forecast_data
|
|
|
|
if parser.parse(data.get_date_time()).date() == input_date.date()
|
|
|
|
]
|
2024-02-18 21:28:02 +01:00
|
|
|
daily_forecast = []
|
|
|
|
for d in daily_forecast_obj:
|
|
|
|
daily_forecast.append(d.get_temperature())
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-02-18 21:28:02 +01:00
|
|
|
return np.array(daily_forecast)
|
2024-02-18 14:32:27 +01:00
|
|
|
|
2024-02-25 16:47:28 +01:00
|
|
|
def get_pv_forecast_for_date_range(self, start_date_str, end_date_str):
|
|
|
|
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
|
|
|
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
|
|
|
date_range_forecast = []
|
2024-03-03 10:03:32 +01:00
|
|
|
|
2024-02-25 16:47:28 +01:00
|
|
|
for data in self.forecast_data:
|
2024-10-03 11:05:44 +02:00
|
|
|
data_date = (
|
|
|
|
data.get_date_time().date()
|
|
|
|
) # parser.parse(data.get_date_time()).date()
|
2024-02-25 16:47:28 +01:00
|
|
|
if start_date <= data_date <= end_date:
|
|
|
|
date_range_forecast.append(data)
|
2024-10-03 11:05:44 +02:00
|
|
|
print(data.get_date_time(), " ", data.get_ac_power())
|
|
|
|
|
|
|
|
ac_power_forecast = np.array(
|
|
|
|
[data.get_ac_power() for data in date_range_forecast]
|
|
|
|
)
|
|
|
|
|
|
|
|
return np.array(ac_power_forecast)[: self.prediction_hours]
|
2024-02-25 16:47:28 +01:00
|
|
|
|
|
|
|
def get_temperature_for_date_range(self, start_date_str, end_date_str):
|
|
|
|
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
|
|
|
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
|
|
|
date_range_forecast = []
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-02-25 16:47:28 +01:00
|
|
|
for data in self.forecast_data:
|
2024-08-30 11:49:44 +02:00
|
|
|
data_date = data.get_date_time().date()
|
2024-02-25 16:47:28 +01:00
|
|
|
if start_date <= data_date <= end_date:
|
|
|
|
date_range_forecast.append(data)
|
2024-10-03 11:05:44 +02:00
|
|
|
|
2024-08-30 11:49:44 +02:00
|
|
|
temperature_forecast = [data.get_temperature() for data in date_range_forecast]
|
2024-10-03 11:05:44 +02:00
|
|
|
return np.array(temperature_forecast)[: self.prediction_hours]
|
2024-08-30 11:49:44 +02:00
|
|
|
|
|
|
|
def get_forecast_dataframe(self):
|
|
|
|
# Wandelt die Vorhersagedaten in ein Pandas DataFrame um
|
2024-10-03 11:05:44 +02:00
|
|
|
data = [
|
|
|
|
{
|
|
|
|
"date_time": f.get_date_time(),
|
|
|
|
"dc_power": f.get_dc_power(),
|
|
|
|
"ac_power": f.get_ac_power(),
|
|
|
|
"windspeed_10m": f.get_windspeed_10m(),
|
|
|
|
"temperature": f.get_temperature(),
|
|
|
|
}
|
|
|
|
for f in self.forecast_data
|
|
|
|
]
|
2024-08-30 11:49:44 +02:00
|
|
|
|
|
|
|
# Erstelle ein DataFrame
|
|
|
|
df = pd.DataFrame(data)
|
|
|
|
return df
|
|
|
|
|
2024-03-31 13:00:01 +02:00
|
|
|
def print_ac_power_and_measurement(self):
|
2024-08-30 11:49:44 +02:00
|
|
|
"""Druckt die DC-Leistung und den Messwert für jede Stunde."""
|
2024-03-31 13:00:01 +02:00
|
|
|
for forecast in self.forecast_data:
|
|
|
|
date_time = forecast.date_time
|
2024-10-03 11:05:44 +02:00
|
|
|
print(
|
|
|
|
f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, Messwert: {forecast.ac_power_measurement}, AC GET: {forecast.get_ac_power()}"
|
|
|
|
)
|
|
|
|
|
2024-02-16 12:57:09 +01:00
|
|
|
|
|
|
|
# Beispiel für die Verwendung der Klasse
|
2024-10-03 11:05:44 +02:00
|
|
|
if __name__ == "__main__":
|
|
|
|
forecast = PVForecast(
|
|
|
|
prediction_hours=24,
|
|
|
|
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m",
|
|
|
|
)
|
|
|
|
forecast.update_ac_power_measurement(
|
|
|
|
date_time=datetime.now(), ac_power_measurement=1000
|
|
|
|
)
|
2024-03-31 13:00:01 +02:00
|
|
|
forecast.print_ac_power_and_measurement()
|