EOS/modules/class_pv_forecast.py

168 lines
6.3 KiB
Python
Raw Normal View History

2024-02-16 12:57:09 +01:00
from flask import Flask, jsonify, request
import numpy as np
from datetime import datetime
from pprint import pprint
import json, sys, os
import requests, hashlib
2024-02-16 12:57:09 +01:00
class ForecastData:
def __init__(self, date_time, dc_power, ac_power, windspeed_10m, temperature):
self.date_time = date_time
self.dc_power = dc_power
self.ac_power = ac_power
self.windspeed_10m = windspeed_10m
self.temperature = temperature
# Getter für die ForecastData-Attribute
def get_date_time(self):
return self.date_time
2024-02-16 12:57:09 +01:00
def get_dc_power(self):
return self.dc_power
2024-02-16 12:57:09 +01:00
def get_ac_power(self):
return self.ac_power
2024-02-16 12:57:09 +01:00
def get_windspeed_10m(self):
return self.windspeed_10m
2024-02-16 12:57:09 +01:00
def get_temperature(self):
return self.temperature
2024-02-16 12:57:09 +01:00
class PVForecast:
def __init__(self, filepath=None, url=None, cache_dir='cache', prediction_hours = 48):
2024-02-16 12:57:09 +01:00
self.meta = {}
self.forecast_data = []
self.cache_dir = cache_dir
self.prediction_hours = prediction_hours
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
if filepath:
self.load_data_from_file(filepath)
elif url:
self.load_data_with_caching(url)
# Überprüfung nach dem Laden der Daten
if len(self.forecast_data) < self.prediction_hours:
raise ValueError(f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt.")
2024-02-16 12:57:09 +01:00
def process_data(self, data):
self.meta = data.get('meta', {})
values = data.get('values', [])[0]
for value in values:
forecast = ForecastData(
date_time=value.get('datetime'),
dc_power=value.get('dcPower'),
ac_power=value.get('power'),
windspeed_10m=value.get('windspeed_10m'),
temperature=value.get('temperature')
)
self.forecast_data.append(forecast)
def load_data_from_file(self, filepath):
with open(filepath, 'r') as file:
2024-02-16 12:57:09 +01:00
data = json.load(file)
self.process_data(data)
def load_data_from_url(self, url):
response = requests.get(url)
if response.status_code == 200:
data = response.json()
pprint(data)
self.process_data(data)
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
self.load_data_from_url(url)
def load_data_with_caching(self, url):
date = datetime.now().strftime("%Y-%m-%d")
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url,date))
if os.path.exists(cache_file):
with open(cache_file, 'r') as file:
data = json.load(file)
print("Loading data from cache.")
else:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
with open(cache_file, 'w') as file:
json.dump(data, file)
print("Data fetched from URL and cached.")
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
return
self.process_data(data)
def generate_cache_filename(self, url,date):
# Erzeugt einen SHA-256 Hash der URL als Dateinamen
cache_key = hashlib.sha256(f"{url}{date}".encode('utf-8')).hexdigest()
#cache_path = os.path.join(self.cache_dir, cache_key)
return f"cache_{cache_key}.json"
2024-02-16 12:57:09 +01:00
def get_forecast_data(self):
return self.forecast_data
2024-02-18 14:32:27 +01:00
def get_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
daily_forecast = []
for d in daily_forecast_obj:
daily_forecast.append(d.get_ac_power())
return np.array(daily_forecast)
2024-02-18 21:28:02 +01:00
def get_temperature_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
daily_forecast = []
for d in daily_forecast_obj:
daily_forecast.append(d.get_temperature())
return np.array(daily_forecast)
2024-02-18 14:32:27 +01:00
def get_pv_forecast_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
for data in self.forecast_data:
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
#print(data.get_date_time())
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
return np.array(ac_power_forecast)[:self.prediction_hours]
def get_temperature_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
for data in self.forecast_data:
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
forecast_data = date_range_forecast
temperature_forecast = [data.get_temperature() for data in forecast_data]
return np.array(temperature_forecast)[:self.prediction_hours]
2024-02-18 14:32:27 +01:00
2024-02-16 12:57:09 +01:00
# Beispiel für die Verwendung der Klasse
if __name__ == '__main__':
forecast = PVForecast(r'..\test_data\pvprognose.json')
for data in forecast.get_forecast_data():
print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())