EOS/test.py

174 lines
6.0 KiB
Python
Raw Normal View History

2024-02-18 14:32:27 +01:00
from flask import Flask, jsonify, request
import numpy as np
from datetime import datetime
from modules.class_load import *
from modules.class_ems import *
from modules.class_pv_forecast import *
from modules.class_akku import *
2024-02-18 15:07:20 +01:00
from modules.class_strompreis import *
2024-02-18 21:28:02 +01:00
from modules.class_heatpump import *
2024-02-18 14:32:27 +01:00
from pprint import pprint
2024-02-18 15:07:20 +01:00
import matplotlib.pyplot as plt
from modules.visualize import *
2024-02-18 15:53:29 +01:00
from deap import base, creator, tools, algorithms
import numpy as np
import random
2024-02-18 16:57:57 +01:00
import os
2024-02-18 14:32:27 +01:00
date = "2024-02-26"
2024-02-18 15:07:20 +01:00
akku_size = 1000 # Wh
year_energy = 2000*1000 #Wh
einspeiseverguetung_cent_pro_wh = np.full(24, 7/1000.0)
2024-02-18 14:32:27 +01:00
2024-02-18 21:28:02 +01:00
max_heizleistung = 5000 # 5 kW Heizleistung
wp = Waermepumpe(max_heizleistung)
2024-02-18 15:53:29 +01:00
2024-02-18 14:32:27 +01:00
akku = PVAkku(akku_size)
2024-02-18 15:53:29 +01:00
discharge_array = np.full(24,1)
2024-02-18 14:32:27 +01:00
# Load Forecast
###############
2024-02-18 14:32:27 +01:00
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
2024-02-18 21:28:02 +01:00
leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
pprint(leistung_haushalt.shape)
2024-02-18 14:32:27 +01:00
# PV Forecast
###############
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
2024-02-18 14:32:27 +01:00
pv_forecast = PVforecast.get_forecast_for_date(date)
2024-02-18 21:28:02 +01:00
temperature_forecast = PVforecast.get_temperature_forecast_for_date(date)
pprint(pv_forecast.shape)
2024-02-18 15:07:20 +01:00
# Strompreise
###############
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date+"&end="+date+"")
specific_date_prices = price_forecast.get_price_for_date(date)
pprint(f"Preise für {date}: {specific_date_prices}")
2024-02-18 14:32:27 +01:00
2024-02-18 21:28:02 +01:00
# WP
leistung_wp = wp.simulate_24h(temperature_forecast)
# LOAD
2024-02-18 21:28:02 +01:00
load = leistung_haushalt + leistung_wp
2024-02-18 14:32:27 +01:00
2024-02-18 15:07:20 +01:00
# EMS / Stromzähler Bilanz
2024-02-18 21:28:02 +01:00
ems = EnergieManagementSystem(akku, load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
2024-02-18 14:32:27 +01:00
o = ems.simuliere()
2024-02-18 15:53:29 +01:00
pprint(o["Gesamtbilanz_Euro"])
# Optimierung
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
def evaluate(individual):
# Hier müssen Sie Ihre Logik einbauen, um die Gesamtbilanz zu berechnen
# basierend auf dem gegebenen `individual` (discharge_array)
#akku.set_discharge_per_hour(individual)
ems.reset()
ems.set_akku_discharge_hours(individual)
o = ems.simuliere()
gesamtbilanz = o["Gesamtbilanz_Euro"]
#print(individual, " ",gesamtbilanz)
return (gesamtbilanz,)
# Werkzeug-Setup
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 24)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# Genetischer Algorithmus
def optimize():
population = toolbox.population(n=100)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=100,
stats=stats, halloffame=hof, verbose=True)
return hof[0]
best_solution = optimize()
print("Beste Lösung:", best_solution)
ems.set_akku_discharge_hours(best_solution)
o = ems.simuliere()
pprint(o["Gesamtbilanz_Euro"])
2024-02-18 14:32:27 +01:00
2024-02-18 15:07:20 +01:00
2024-02-18 21:28:02 +01:00
visualisiere_ergebnisse(load,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o)
2024-02-18 15:07:20 +01:00
2024-02-18 14:32:27 +01:00
# for data in forecast.get_forecast_data():
# print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())for data in forecast.get_forecast_data():
# app = Flask(__name__)
# @app.route('/getdata', methods=['GET'])
# def get_data():
# # Hole das Datum aus den Query-Parametern
# date_str = request.args.get('date')
# year_energy = request.args.get('year_energy')
# try:
# # Konvertiere das Datum in ein datetime-Objekt
# date_obj = datetime.strptime(date_str, '%Y-%m-%d')
# filepath = r'.\load_profiles.npz' # Pfad zur JSON-Datei anpassen
# lf = cl.LoadForecast(filepath=filepath, year_energy=float(year_energy))
# specific_date_prices = lf.get_daily_stats('2024-02-16')
# # Berechne den Tag des Jahres
# #day_of_year = date_obj.timetuple().tm_yday
# # Konvertiere den Tag des Jahres in einen String, falls die Schlüssel als Strings gespeichert sind
# #day_key = int(day_of_year)
# #print(day_key)
# # Überprüfe, ob der Tag im Jahr in den Daten vorhanden ist
# array_list = lf.get_daily_stats(date_str)
# pprint(array_list)
# pprint(array_list.shape)
# if array_list.shape == (2,24):
# #if day_key < len(load_profiles_exp):
# # Konvertiere das Array in eine Liste für die JSON-Antwort
# #((load_profiles_exp_l[day_key]).tolist(),(load_profiles_std_l)[day_key].tolist())
# return jsonify({date_str: array_list.tolist()})
# else:
# return jsonify({"error": "Datum nicht gefunden"}), 404
# except ValueError:
# # Wenn das Datum nicht im richtigen Format ist oder ungültig ist
# return jsonify({"error": "Ungültiges Datum"}), 400
# if __name__ == '__main__':
# app.run(debug=True)