2024-02-18 14:32:27 +01:00
from flask import Flask , jsonify , request
import numpy as np
from datetime import datetime
from modules . class_load import *
from modules . class_ems import *
from modules . class_pv_forecast import *
from modules . class_akku import *
2024-02-18 15:07:20 +01:00
from modules . class_strompreis import *
2024-02-18 14:32:27 +01:00
from pprint import pprint
2024-02-18 15:07:20 +01:00
import matplotlib . pyplot as plt
from modules . visualize import *
2024-02-18 15:53:29 +01:00
from deap import base , creator , tools , algorithms
import numpy as np
import random
2024-02-18 14:32:27 +01:00
2024-02-18 15:07:20 +01:00
date = " 2024-02-16 "
akku_size = 1000 # Wh
year_energy = 2000 * 1000 #Wh
einspeiseverguetung_cent_pro_wh = np . full ( 24 , 7 / 1000.0 )
2024-02-18 14:32:27 +01:00
2024-02-18 15:53:29 +01:00
2024-02-18 14:32:27 +01:00
akku = PVAkku ( akku_size )
2024-02-18 15:53:29 +01:00
discharge_array = np . full ( 24 , 1 )
# discharge_array[12] = 0
# discharge_array[13] = 0
# discharge_array[14] = 0
# discharge_array[15] = 0
# discharge_array[16] = 0
# discharge_array[17] = 0
# discharge_array[18] = 1
# akku.set_discharge_per_hour(discharge_array)
2024-02-18 14:32:27 +01:00
# Load Forecast
lf = LoadForecast ( filepath = r ' load_profiles.npz ' , year_energy = year_energy )
specific_date_load = lf . get_daily_stats ( date ) [ 0 , . . . ] # Datum anpassen
pprint ( specific_date_load . shape )
# PV Forecast
PVforecast = PVForecast ( r ' . \ test_data \ pvprognose.json ' )
pv_forecast = PVforecast . get_forecast_for_date ( date )
pprint ( pv_forecast . shape )
2024-02-18 15:07:20 +01:00
# Strompreise
filepath = r ' . \ test_data \ strompreis.json ' # Pfad zur JSON-Datei anpassen
price_forecast = HourlyElectricityPriceForecast ( filepath )
specific_date_prices = price_forecast . get_prices_for_date ( date )
2024-02-18 14:32:27 +01:00
2024-02-18 15:07:20 +01:00
# EMS / Stromzähler Bilanz
ems = EnergieManagementSystem ( akku , specific_date_load , pv_forecast , specific_date_prices , einspeiseverguetung_cent_pro_wh )
2024-02-18 14:32:27 +01:00
o = ems . simuliere ( )
2024-02-18 15:53:29 +01:00
pprint ( o [ " Gesamtbilanz_Euro " ] )
# Optimierung
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
def evaluate ( individual ) :
# Hier müssen Sie Ihre Logik einbauen, um die Gesamtbilanz zu berechnen
# basierend auf dem gegebenen `individual` (discharge_array)
#akku.set_discharge_per_hour(individual)
ems . reset ( )
ems . set_akku_discharge_hours ( individual )
o = ems . simuliere ( )
gesamtbilanz = o [ " Gesamtbilanz_Euro " ]
#print(individual, " ",gesamtbilanz)
return ( gesamtbilanz , )
# Werkzeug-Setup
creator . create ( " FitnessMin " , base . Fitness , weights = ( - 1.0 , ) )
creator . create ( " Individual " , list , fitness = creator . FitnessMin )
toolbox = base . Toolbox ( )
toolbox . register ( " attr_bool " , random . randint , 0 , 1 )
toolbox . register ( " individual " , tools . initRepeat , creator . Individual , toolbox . attr_bool , 24 )
toolbox . register ( " population " , tools . initRepeat , list , toolbox . individual )
toolbox . register ( " evaluate " , evaluate )
toolbox . register ( " mate " , tools . cxTwoPoint )
toolbox . register ( " mutate " , tools . mutFlipBit , indpb = 0.05 )
toolbox . register ( " select " , tools . selTournament , tournsize = 3 )
# Genetischer Algorithmus
def optimize ( ) :
population = toolbox . population ( n = 100 )
hof = tools . HallOfFame ( 1 )
stats = tools . Statistics ( lambda ind : ind . fitness . values )
stats . register ( " avg " , np . mean )
stats . register ( " min " , np . min )
stats . register ( " max " , np . max )
algorithms . eaSimple ( population , toolbox , cxpb = 0.5 , mutpb = 0.2 , ngen = 100 ,
stats = stats , halloffame = hof , verbose = True )
return hof [ 0 ]
best_solution = optimize ( )
print ( " Beste Lösung: " , best_solution )
ems . set_akku_discharge_hours ( best_solution )
o = ems . simuliere ( )
pprint ( o [ " Gesamtbilanz_Euro " ] )
2024-02-18 14:32:27 +01:00
2024-02-18 15:07:20 +01:00
visualisiere_ergebnisse ( specific_date_load , pv_forecast , specific_date_prices , o )
2024-02-18 14:32:27 +01:00
# for data in forecast.get_forecast_data():
# print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())for data in forecast.get_forecast_data():
# app = Flask(__name__)
# @app.route('/getdata', methods=['GET'])
# def get_data():
# # Hole das Datum aus den Query-Parametern
# date_str = request.args.get('date')
# year_energy = request.args.get('year_energy')
# try:
# # Konvertiere das Datum in ein datetime-Objekt
# date_obj = datetime.strptime(date_str, '%Y-%m-%d')
# filepath = r'.\load_profiles.npz' # Pfad zur JSON-Datei anpassen
# lf = cl.LoadForecast(filepath=filepath, year_energy=float(year_energy))
# specific_date_prices = lf.get_daily_stats('2024-02-16')
# # Berechne den Tag des Jahres
# #day_of_year = date_obj.timetuple().tm_yday
# # Konvertiere den Tag des Jahres in einen String, falls die Schlüssel als Strings gespeichert sind
# #day_key = int(day_of_year)
# #print(day_key)
# # Überprüfe, ob der Tag im Jahr in den Daten vorhanden ist
# array_list = lf.get_daily_stats(date_str)
# pprint(array_list)
# pprint(array_list.shape)
# if array_list.shape == (2,24):
# #if day_key < len(load_profiles_exp):
# # Konvertiere das Array in eine Liste für die JSON-Antwort
# #((load_profiles_exp_l[day_key]).tolist(),(load_profiles_std_l)[day_key].tolist())
# return jsonify({date_str: array_list.tolist()})
# else:
# return jsonify({"error": "Datum nicht gefunden"}), 404
# except ValueError:
# # Wenn das Datum nicht im richtigen Format ist oder ungültig ist
# return jsonify({"error": "Ungültiges Datum"}), 400
# if __name__ == '__main__':
# app.run(debug=True)