458 lines
19 KiB
Python
Raw Normal View History

from typing import Any, ClassVar, Dict, Optional, Union
2024-10-22 10:29:57 +02:00
import numpy as np
from numpydantic import NDArray, Shape
from pendulum import DateTime
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
from typing_extensions import Self
2024-10-03 11:05:44 +02:00
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel
2024-12-19 14:50:19 +01:00
from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Inverter
from akkudoktoreos.utils.datetimeutil import to_datetime
from akkudoktoreos.utils.utils import NumpyEncoder
2024-10-22 10:29:57 +02:00
logger = get_logger(__name__)
class EnergieManagementSystemParameters(ParametersBaseModel):
pv_prognose_wh: list[float] = Field(
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
)
strompreis_euro_pro_wh: list[float] = Field(
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
)
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
)
preis_euro_pro_wh_akku: float = Field(
description="A float representing the cost of battery energy per watt-hour."
)
gesamtlast: list[float] = Field(
description="An array of floats representing the total load (consumption) in watts for different time intervals."
)
@model_validator(mode="after")
def validate_list_length(self) -> Self:
pv_prognose_length = len(self.pv_prognose_wh)
if (
pv_prognose_length != len(self.strompreis_euro_pro_wh)
or pv_prognose_length != len(self.gesamtlast)
or (
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
)
):
raise ValueError("Input lists have different lengths")
return self
class SimulationResult(ParametersBaseModel):
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
Last_Wh_pro_Stunde: list[Optional[float]] = Field(description="TBD")
EAuto_SoC_pro_Stunde: list[Optional[float]] = Field(
description="The state of charge of the EV for each hour."
)
Einnahmen_Euro_pro_Stunde: list[Optional[float]] = Field(
description="The revenue from grid feed-in or other sources in euros per hour."
)
Gesamt_Verluste: float = Field(
description="The total losses in watt-hours over the entire period."
)
Gesamtbilanz_Euro: float = Field(
description="The total balance of revenues minus costs in euros."
)
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
description="The energy consumption of a household appliance in watt-hours per hour."
)
Kosten_Euro_pro_Stunde: list[Optional[float]] = Field(
description="The costs in euros per hour."
)
Netzbezug_Wh_pro_Stunde: list[Optional[float]] = Field(
description="The grid energy drawn in watt-hours per hour."
)
Netzeinspeisung_Wh_pro_Stunde: list[Optional[float]] = Field(
description="The energy fed into the grid in watt-hours per hour."
)
Verluste_Pro_Stunde: list[Optional[float]] = Field(
description="The losses in watt-hours per hour."
)
akku_soc_pro_stunde: list[Optional[float]] = Field(
description="The state of charge of the battery (not the EV) in percentage per hour."
)
Electricity_price: list[Optional[float]] = Field(
description="Used Electricity Price, including predictions"
)
@field_validator(
"Last_Wh_pro_Stunde",
"Netzeinspeisung_Wh_pro_Stunde",
"akku_soc_pro_stunde",
"Netzbezug_Wh_pro_Stunde",
"Kosten_Euro_pro_Stunde",
"Einnahmen_Euro_pro_Stunde",
"EAuto_SoC_pro_Stunde",
"Verluste_Pro_Stunde",
"Home_appliance_wh_per_hour",
"Electricity_price",
mode="before",
)
def convert_numpy(cls, field: Any) -> Any:
return NumpyEncoder.convert_numpy(field)[0]
class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
# Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict(
validate_assignment=False,
)
# Start datetime.
_start_datetime: ClassVar[Optional[DateTime]] = None
@computed_field # type: ignore[prop-decorator]
@property
def start_datetime(self) -> DateTime:
"""The starting datetime of the current or latest energy management."""
if EnergieManagementSystem._start_datetime is None:
EnergieManagementSystem.set_start_datetime()
return EnergieManagementSystem._start_datetime
@classmethod
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
if start_datetime is None:
start_datetime = to_datetime()
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
return cls._start_datetime
# -------------------------
# TODO: Take from prediction
# -------------------------
load_energy_array: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
)
pv_prediction_wh: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
)
elect_price_hourly: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
)
elect_revenue_per_hour_arr: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
)
# -------------------------
# TODO: Move to devices
# -------------------------
battery: Optional[Battery] = Field(default=None, description="TBD.")
ev: Optional[Battery] = Field(default=None, description="TBD.")
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
inverter: Optional[Inverter] = Field(default=None, description="TBD.")
# -------------------------
# TODO: Move to devices
# -------------------------
ac_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def set_parameters(
2024-10-03 11:05:44 +02:00
self,
parameters: EnergieManagementSystemParameters,
ev: Optional[Battery] = None,
home_appliance: Optional[HomeAppliance] = None,
inverter: Optional[Inverter] = None,
) -> None:
self.load_energy_array = np.array(parameters.gesamtlast, float)
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
self.elect_revenue_per_hour_arr = (
parameters.einspeiseverguetung_euro_pro_wh
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
else np.full(
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
)
)
if inverter is not None:
self.battery = inverter.battery
else:
self.battery = None
self.ev = ev
self.home_appliance = home_appliance
self.inverter = inverter
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0)
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0)
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0)
2024-10-03 11:05:44 +02:00
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
if self.battery is not None:
self.battery.set_discharge_per_hour(ds)
2024-10-03 11:05:44 +02:00
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
self.ac_charge_hours = ds
2024-10-22 10:29:57 +02:00
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
self.dc_charge_hours = ds
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
self.ev_charge_hours = ds
def set_home_appliance_start(self, ds: int, global_start_hour: int = 0) -> None:
if self.home_appliance is not None:
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
2024-10-03 11:05:44 +02:00
def reset(self) -> None:
if self.ev:
self.ev.reset()
if self.battery:
self.battery.reset()
def run(
self,
start_hour: Optional[int] = None,
force_enable: Optional[bool] = False,
force_update: Optional[bool] = False,
) -> None:
"""Run energy management.
Sets `start_datetime` to current hour, updates the configuration and the prediction, and
starts simulation at current hour.
Args:
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
to now.
force_enable (bool, optional): If True, forces to update even if disabled. This
is mostly relevant to prediction providers.
force_update (bool, optional): If True, forces to update the data even if still cached.
"""
self.set_start_hour(start_hour=start_hour)
self.config.update()
# Check for run definitions
if self.start_datetime is None:
error_msg = "Start datetime unknown."
logger.error(error_msg)
raise ValueError(error_msg)
if self.config.prediction.hours is None:
error_msg = "Prediction hours unknown."
logger.error(error_msg)
raise ValueError(error_msg)
if self.config.prediction.optimisation_hours is None:
error_msg = "Optimisation hours unknown."
logger.error(error_msg)
raise ValueError(error_msg)
self.prediction.update_data(force_enable=force_enable, force_update=force_update)
# TODO: Create optimisation problem that calls into devices.update_data() for simulations.
def set_start_hour(self, start_hour: Optional[int] = None) -> None:
"""Sets start datetime to given hour.
Args:
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
to now.
"""
if start_hour is None:
self.set_start_datetime()
else:
start_datetime = to_datetime().set(hour=start_hour, minute=0, second=0, microsecond=0)
self.set_start_datetime(start_datetime)
def simulate_start_now(self) -> dict[str, Any]:
start_hour = to_datetime().now().hour
return self.simulate(start_hour)
def simulate(self, start_hour: int) -> dict[str, Any]:
"""hour.
akku_soc_pro_stunde begin of the hour, initial hour state!
last_wh_pro_stunde integral of last hour (end state)
"""
# Check for simulation integrity
2024-12-29 19:37:26 +01:00
missing_data = []
if self.load_energy_array is None:
missing_data.append("Load Curve")
if self.pv_prediction_wh is None:
missing_data.append("PV Forecast")
if self.elect_price_hourly is None:
missing_data.append("Electricity Price")
if self.ev_charge_hours is None:
missing_data.append("EV Charge Hours")
if self.ac_charge_hours is None:
missing_data.append("AC Charge Hours")
if self.dc_charge_hours is None:
missing_data.append("DC Charge Hours")
if self.elect_revenue_per_hour_arr is None:
missing_data.append("Feed-in Tariff")
if missing_data:
error_msg = "Mandatory data missing - " + ", ".join(missing_data)
logger.error(error_msg)
raise ValueError(error_msg)
2024-12-29 19:37:26 +01:00
else:
# make mypy happy
assert self.load_energy_array is not None
assert self.pv_prediction_wh is not None
assert self.elect_price_hourly is not None
assert self.ev_charge_hours is not None
assert self.ac_charge_hours is not None
assert self.dc_charge_hours is not None
assert self.elect_revenue_per_hour_arr is not None
load_energy_array = self.load_energy_array
if not (
len(load_energy_array) == len(self.pv_prediction_wh) == len(self.elect_price_hourly)
):
error_msg = f"Array sizes do not match: Load Curve = {len(load_energy_array)}, PV Forecast = {len(self.pv_prediction_wh)}, Electricity Price = {len(self.elect_price_hourly)}"
logger.error(error_msg)
raise ValueError(error_msg)
# Optimized total hours calculation
end_hour = len(load_energy_array)
total_hours = end_hour - start_hour
2024-09-30 10:32:04 +02:00
# Pre-allocate arrays for the results, optimized for speed
loads_energy_per_hour = np.full((total_hours), np.nan)
feedin_energy_per_hour = np.full((total_hours), np.nan)
consumption_energy_per_hour = np.full((total_hours), np.nan)
costs_per_hour = np.full((total_hours), np.nan)
revenue_per_hour = np.full((total_hours), np.nan)
soc_per_hour = np.full((total_hours), np.nan) # Hour End State
soc_ev_per_hour = np.full((total_hours), np.nan)
losses_wh_per_hour = np.full((total_hours), np.nan)
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
electricity_price_per_hour = np.full((total_hours), np.nan)
# Set initial state
if self.battery:
soc_per_hour[0] = self.battery.current_soc_percentage()
if self.ev:
soc_ev_per_hour[0] = self.ev.current_soc_percentage()
2024-10-22 10:29:57 +02:00
for hour in range(start_hour, end_hour):
hour_since_now = hour - start_hour
# save begin states
if self.battery:
soc_per_hour[hour_since_now] = self.battery.current_soc_percentage()
else:
soc_per_hour[hour_since_now] = 0.0
if self.ev:
soc_ev_per_hour[hour_since_now] = self.ev.current_soc_percentage()
2024-10-22 10:29:57 +02:00
# Accumulate loads and PV generation
consumption = self.load_energy_array[hour]
losses_wh_per_hour[hour_since_now] = 0.0
# Home appliances
if self.home_appliance:
ha_load = self.home_appliance.get_load_for_hour(hour)
consumption += ha_load
home_appliance_wh_per_hour[hour_since_now] = ha_load
2024-09-30 10:32:04 +02:00
# E-Auto handling
if self.ev:
if self.ev_charge_hours[hour] > 0:
loaded_energy_ev, verluste_eauto = self.ev.charge_energy(
None, hour, relative_power=self.ev_charge_hours[hour]
)
consumption += loaded_energy_ev
losses_wh_per_hour[hour_since_now] += verluste_eauto
# Process inverter logic
energy_feedin_grid_actual, energy_consumption_grid_actual, losses, eigenverbrauch = (
0.0,
0.0,
0.0,
0.0,
)
if self.battery:
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
if self.inverter:
energy_produced = self.pv_prediction_wh[hour]
(
energy_feedin_grid_actual,
energy_consumption_grid_actual,
losses,
eigenverbrauch,
) = self.inverter.process_energy(energy_produced, consumption, hour)
2024-10-20 18:18:06 +02:00
# AC PV Battery Charge
if self.battery and self.ac_charge_hours[hour] > 0.0:
self.battery.set_charge_allowed_for_hour(1, hour)
battery_charged_energy_actual, battery_losses_actual = self.battery.charge_energy(
None, hour, relative_power=self.ac_charge_hours[hour]
2024-10-22 10:29:57 +02:00
)
# print(hour, " ", battery_charged_energy_actual, " ",self.ac_charge_hours[hour]," ",self.battery.current_soc_percentage())
consumption += battery_charged_energy_actual
consumption += battery_losses_actual
energy_consumption_grid_actual += battery_charged_energy_actual
energy_consumption_grid_actual += battery_losses_actual
losses_wh_per_hour[hour_since_now] += battery_losses_actual
feedin_energy_per_hour[hour_since_now] = energy_feedin_grid_actual
consumption_energy_per_hour[hour_since_now] = energy_consumption_grid_actual
losses_wh_per_hour[hour_since_now] += losses
loads_energy_per_hour[hour_since_now] = consumption
electricity_price_per_hour[hour_since_now] = self.elect_price_hourly[hour]
# Financial calculations
costs_per_hour[hour_since_now] = (
energy_consumption_grid_actual * self.elect_price_hourly[hour]
)
revenue_per_hour[hour_since_now] = (
energy_feedin_grid_actual * self.elect_revenue_per_hour_arr[hour]
2024-10-03 11:05:44 +02:00
)
2024-09-30 10:32:04 +02:00
# Total cost and return
gesamtkosten_euro = np.nansum(costs_per_hour) - np.nansum(revenue_per_hour)
# Prepare output dictionary
out: Dict[str, Union[np.ndarray, float]] = {
"Last_Wh_pro_Stunde": loads_energy_per_hour,
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
"Kosten_Euro_pro_Stunde": costs_per_hour,
"akku_soc_pro_stunde": soc_per_hour,
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
2024-10-03 11:05:44 +02:00
"Gesamtbilanz_Euro": gesamtkosten_euro,
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
"Gesamteinnahmen_Euro": np.nansum(revenue_per_hour),
"Gesamtkosten_Euro": np.nansum(costs_per_hour),
"Verluste_Pro_Stunde": losses_wh_per_hour,
"Gesamt_Verluste": np.nansum(losses_wh_per_hour),
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
"Electricity_price": electricity_price_per_hour,
2024-02-18 14:32:27 +01:00
}
return out
# Initialize the Energy Management System, it is a singleton.
ems = EnergieManagementSystem()
def get_ems() -> EnergieManagementSystem:
"""Gets the EOS Energy Management System."""
return ems