EOS/single_test_optimization.py

241 lines
5.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import argparse
import cProfile
import pstats
import sys
2024-10-22 10:36:21 +02:00
import time
import numpy as np
from akkudoktoreos.config.config import get_config
from akkudoktoreos.optimization.genetic import (
OptimizationParameters,
optimization_problem,
)
2024-10-22 10:36:21 +02:00
def prepare_optimization_parameters() -> OptimizationParameters:
"""Prepare and return optimization parameters with predefined data.
Returns:
OptimizationParameters: Configured optimization parameters
"""
# PV Forecast (in W)
pv_forecast = np.zeros(48)
pv_forecast[12] = 5000
# Temperature Forecast (in degree C)
temperature_forecast = [
18.3,
17.8,
16.9,
16.2,
15.6,
15.1,
14.6,
14.2,
14.3,
14.8,
15.7,
16.7,
17.4,
18.0,
18.6,
19.2,
19.1,
18.7,
18.5,
17.7,
16.2,
14.6,
13.6,
13.0,
12.6,
12.2,
11.7,
11.6,
11.3,
11.0,
10.7,
10.2,
11.4,
14.4,
16.4,
18.3,
19.5,
20.7,
21.9,
22.7,
23.1,
23.1,
22.8,
21.8,
20.2,
19.1,
18.0,
17.4,
]
# Electricity Price (in Euro per Wh)
strompreis_euro_pro_wh = np.full(48, 0.001)
strompreis_euro_pro_wh[0:10] = 0.00001
strompreis_euro_pro_wh[11:15] = 0.00005
strompreis_euro_pro_wh[20] = 0.00001
# Overall System Load (in W)
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Start Solution (binary)
start_solution = None
# Define parameters for the optimization problem
return OptimizationParameters(
**{
"ems": {
"preis_euro_pro_wh_akku": 0e-05,
"einspeiseverguetung_euro_pro_wh": 7e-05,
"gesamtlast": gesamtlast,
"pv_prognose_wh": pv_forecast,
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"kapazitaet_wh": 26400,
"start_soc_prozent": 15,
"min_soc_prozent": 15,
},
"eauto": {
"min_soc_prozent": 50,
"kapazitaet_wh": 60000,
"lade_effizienz": 0.95,
"max_ladeleistung_w": 11040,
"start_soc_prozent": 5,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
)
def run_optimization(start_hour: int = 0, verbose: bool = False) -> dict:
"""Run the optimization problem.
Args:
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
verbose (bool, optional): Whether to print verbose output. Defaults to False.
Returns:
dict: Optimization result as a dictionary
"""
# Initialize the optimization problem using the default configuration
config_eos = get_config()
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 24})
opt_class = optimization_problem(verbose=verbose, fixed_seed=42)
# Prepare parameters
parameters = prepare_optimization_parameters()
# Perform the optimisation based on the provided parameters and start hour
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour)
return result.model_dump()
def main():
"""Main function to run the optimization script with optional profiling."""
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
parser.add_argument(
"--verbose", action="store_true", help="Enable verbose output during optimization"
)
parser.add_argument(
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
)
args = parser.parse_args()
if args.profile:
# Run with profiling
profiler = cProfile.Profile()
try:
result = profiler.runcall(
run_optimization, start_hour=args.start_hour, verbose=args.verbose
)
# Print profiling statistics
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
# Print result
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
else:
# Run without profiling
try:
start_time = time.time()
result = run_optimization(start_hour=args.start_hour, verbose=args.verbose)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()