264 lines
12 KiB
Python
Raw Normal View History

from datetime import datetime
from typing import Any, Dict, Optional, Union
2024-10-22 10:29:57 +02:00
import numpy as np
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
2024-10-03 11:05:44 +02:00
from akkudoktoreos.config import EOSConfig
from akkudoktoreos.devices.battery import PVAkku
from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Wechselrichter
from akkudoktoreos.utils.utils import NumpyEncoder
2024-10-22 10:29:57 +02:00
class EnergieManagementSystemParameters(BaseModel):
pv_prognose_wh: list[float] = Field(
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
)
strompreis_euro_pro_wh: list[float] = Field(
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
)
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
)
preis_euro_pro_wh_akku: float
gesamtlast: list[float] = Field(
description="An array of floats representing the total load (consumption) in watts for different time intervals."
)
@model_validator(mode="after")
def validate_list_length(self) -> Self:
pv_prognose_length = len(self.pv_prognose_wh)
if (
pv_prognose_length != len(self.strompreis_euro_pro_wh)
or pv_prognose_length != len(self.gesamtlast)
or (
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
)
):
raise ValueError("Input lists have different lengths")
return self
class SimulationResult(BaseModel):
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
Last_Wh_pro_Stunde: list[Optional[float]] = Field(description="TBD")
EAuto_SoC_pro_Stunde: list[Optional[float]] = Field(
description="The state of charge of the EV for each hour."
)
Einnahmen_Euro_pro_Stunde: list[Optional[float]] = Field(
description="The revenue from grid feed-in or other sources in euros per hour."
)
Gesamt_Verluste: float = Field(
description="The total losses in watt-hours over the entire period."
)
Gesamtbilanz_Euro: float = Field(
description="The total balance of revenues minus costs in euros."
)
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
description="The energy consumption of a household appliance in watt-hours per hour."
)
Kosten_Euro_pro_Stunde: list[Optional[float]] = Field(
description="The costs in euros per hour."
)
Netzbezug_Wh_pro_Stunde: list[Optional[float]] = Field(
description="The grid energy drawn in watt-hours per hour."
)
Netzeinspeisung_Wh_pro_Stunde: list[Optional[float]] = Field(
description="The energy fed into the grid in watt-hours per hour."
)
Verluste_Pro_Stunde: list[Optional[float]] = Field(
description="The losses in watt-hours per hour."
)
akku_soc_pro_stunde: list[Optional[float]] = Field(
description="The state of charge of the battery (not the EV) in percentage per hour."
)
Electricity_price: list[Optional[float]] = Field(
description="Used Electricity Price, including predictions"
)
@field_validator(
"Last_Wh_pro_Stunde",
"Netzeinspeisung_Wh_pro_Stunde",
"akku_soc_pro_stunde",
"Netzbezug_Wh_pro_Stunde",
"Kosten_Euro_pro_Stunde",
"Einnahmen_Euro_pro_Stunde",
"EAuto_SoC_pro_Stunde",
"Verluste_Pro_Stunde",
"Home_appliance_wh_per_hour",
"Electricity_price",
mode="before",
)
def convert_numpy(cls, field: Any) -> Any:
return NumpyEncoder.convert_numpy(field)[0]
2024-02-18 14:32:27 +01:00
class EnergieManagementSystem:
2024-10-03 11:05:44 +02:00
def __init__(
self,
config: EOSConfig,
parameters: EnergieManagementSystemParameters,
wechselrichter: Wechselrichter,
eauto: Optional[PVAkku] = None,
home_appliance: Optional[HomeAppliance] = None,
2024-10-03 11:05:44 +02:00
):
2024-05-01 14:38:16 +02:00
self.akku = wechselrichter.akku
self.gesamtlast = np.array(parameters.gesamtlast, float)
self.pv_prognose_wh = np.array(parameters.pv_prognose_wh, float)
self.strompreis_euro_pro_wh = np.array(parameters.strompreis_euro_pro_wh, float)
self.einspeiseverguetung_euro_pro_wh_arr = (
parameters.einspeiseverguetung_euro_pro_wh
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
else np.full(len(self.gesamtlast), parameters.einspeiseverguetung_euro_pro_wh, float)
)
self.eauto = eauto
self.home_appliance = home_appliance
2024-05-01 14:38:16 +02:00
self.wechselrichter = wechselrichter
self.ac_charge_hours = np.full(config.prediction_hours, 0)
self.dc_charge_hours = np.full(config.prediction_hours, 1)
self.ev_charge_hours = np.full(config.prediction_hours, 0)
2024-10-03 11:05:44 +02:00
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
2024-02-18 15:53:29 +01:00
self.akku.set_discharge_per_hour(ds)
2024-10-03 11:05:44 +02:00
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
self.ac_charge_hours = ds
2024-10-22 10:29:57 +02:00
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
self.dc_charge_hours = ds
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
self.ev_charge_hours = ds
def set_home_appliance_start(self, start_hour: int, global_start_hour: int = 0) -> None:
assert self.home_appliance is not None
self.home_appliance.set_starting_time(start_hour, global_start_hour=global_start_hour)
2024-10-03 11:05:44 +02:00
def reset(self) -> None:
if self.eauto:
self.eauto.reset()
2024-02-18 15:53:29 +01:00
self.akku.reset()
def simuliere_ab_jetzt(self) -> dict[str, Any]:
jetzt = datetime.now()
start_stunde = jetzt.hour
return self.simuliere(start_stunde)
def simuliere(self, start_hour: int) -> dict[str, Any]:
"""hour.
akku_soc_pro_stunde begin of the hour, initial hour state!
last_wh_pro_stunde integral of last hour (end state)
"""
lastkurve_wh = self.gesamtlast
2024-10-03 11:05:44 +02:00
assert (
2024-10-10 15:00:32 +02:00
len(lastkurve_wh) == len(self.pv_prognose_wh) == len(self.strompreis_euro_pro_wh)
), f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
# Optimized total hours calculation
end_hour = len(lastkurve_wh)
total_hours = end_hour - start_hour
2024-09-30 10:32:04 +02:00
# Pre-allocate arrays for the results, optimized for speed
loads_energy_per_hour = np.full((total_hours), np.nan)
feedin_energy_per_hour = np.full((total_hours), np.nan)
consumption_energy_per_hour = np.full((total_hours), np.nan)
costs_per_hour = np.full((total_hours), np.nan)
revenue_per_hour = np.full((total_hours), np.nan)
soc_per_hour = np.full((total_hours), np.nan) # Hour End State
soc_ev_per_hour = np.full((total_hours), np.nan)
losses_wh_per_hour = np.full((total_hours), np.nan)
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
electricity_price_per_hour = np.full((total_hours), np.nan)
# Set initial state
soc_per_hour[0] = self.akku.ladezustand_in_prozent()
2024-09-30 10:32:04 +02:00
if self.eauto:
soc_ev_per_hour[0] = self.eauto.ladezustand_in_prozent()
2024-10-22 10:29:57 +02:00
# All States
for hour in range(start_hour, end_hour):
hour_since_now = hour - start_hour
# save begin states
soc_per_hour[hour_since_now] = self.akku.ladezustand_in_prozent()
if self.eauto:
soc_ev_per_hour[hour_since_now] = self.eauto.ladezustand_in_prozent()
2024-10-22 10:29:57 +02:00
# Accumulate loads and PV generation
consumption = self.gesamtlast[hour]
losses_wh_per_hour[hour_since_now] = 0.0
if self.home_appliance:
ha_load = self.home_appliance.get_load_for_hour(hour)
consumption += ha_load
home_appliance_wh_per_hour[hour_since_now] = ha_load
2024-09-30 10:32:04 +02:00
# E-Auto handling
if self.eauto and self.ev_charge_hours[hour] > 0:
loaded_energy_ev, verluste_eauto = self.eauto.energie_laden(
None, hour, relative_power=self.ev_charge_hours[hour]
2024-10-22 10:29:57 +02:00
)
consumption += loaded_energy_ev
losses_wh_per_hour[hour_since_now] += verluste_eauto
2024-10-22 10:29:57 +02:00
# Process inverter logic
energy_produced = self.pv_prognose_wh[hour]
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
energy_feedin_grid_actual, energy_consumption_grid_actual, losses, eigenverbrauch = (
self.wechselrichter.energie_verarbeiten(energy_produced, consumption, hour)
2024-10-03 11:05:44 +02:00
)
2024-10-20 18:18:06 +02:00
# AC PV Battery Charge
if self.ac_charge_hours[hour] > 0.0:
self.akku.set_charge_allowed_for_hour(1, hour)
battery_charged_energy_actual, battery_losses_actual = self.akku.energie_laden(
None, hour, relative_power=self.ac_charge_hours[hour]
2024-10-22 10:29:57 +02:00
)
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.ladezustand_in_prozent())
consumption += battery_charged_energy_actual
consumption += battery_losses_actual
energy_consumption_grid_actual += battery_charged_energy_actual
energy_consumption_grid_actual += battery_losses_actual
losses_wh_per_hour[hour_since_now] += battery_losses_actual
feedin_energy_per_hour[hour_since_now] = energy_feedin_grid_actual
consumption_energy_per_hour[hour_since_now] = energy_consumption_grid_actual
losses_wh_per_hour[hour_since_now] += losses
loads_energy_per_hour[hour_since_now] = consumption
electricity_price_per_hour[hour_since_now] = self.strompreis_euro_pro_wh[hour]
# Financial calculations
costs_per_hour[hour_since_now] = (
energy_consumption_grid_actual * self.strompreis_euro_pro_wh[hour]
)
revenue_per_hour[hour_since_now] = (
energy_feedin_grid_actual * self.einspeiseverguetung_euro_pro_wh_arr[hour]
2024-10-03 11:05:44 +02:00
)
2024-09-30 10:32:04 +02:00
# Total cost and return
gesamtkosten_euro = np.nansum(costs_per_hour) - np.nansum(revenue_per_hour)
# Prepare output dictionary
out: Dict[str, Union[np.ndarray, float]] = {
"Last_Wh_pro_Stunde": loads_energy_per_hour,
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
"Kosten_Euro_pro_Stunde": costs_per_hour,
"akku_soc_pro_stunde": soc_per_hour,
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
2024-10-03 11:05:44 +02:00
"Gesamtbilanz_Euro": gesamtkosten_euro,
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
"Gesamteinnahmen_Euro": np.nansum(revenue_per_hour),
"Gesamtkosten_Euro": np.nansum(costs_per_hour),
"Verluste_Pro_Stunde": losses_wh_per_hour,
"Gesamt_Verluste": np.nansum(losses_wh_per_hour),
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
"Electricity_price": electricity_price_per_hour,
2024-02-18 14:32:27 +01:00
}
return out