fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
""" Genetic algorithm optimisation solution. """
from typing import Any , Optional
import pandas as pd
from loguru import logger
from pydantic import Field , field_validator
2025-11-08 15:42:18 +01:00
from akkudoktoreos . core . coreabc import (
ConfigMixin ,
)
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
from akkudoktoreos . core . emplan import (
DDBCInstruction ,
EnergyManagementPlan ,
FRBCInstruction ,
)
from akkudoktoreos . core . pydantic import PydanticDateTimeDataFrame
from akkudoktoreos . devices . devicesabc import (
ApplianceOperationMode ,
BatteryOperationMode ,
)
from akkudoktoreos . devices . genetic . battery import Battery
from akkudoktoreos . optimization . genetic . geneticdevices import GeneticParametersBaseModel
from akkudoktoreos . optimization . optimization import OptimizationSolution
from akkudoktoreos . prediction . prediction import get_prediction
from akkudoktoreos . utils . datetimeutil import to_datetime , to_duration
from akkudoktoreos . utils . utils import NumpyEncoder
class DeviceOptimizeResult ( GeneticParametersBaseModel ) :
2025-11-10 16:57:44 +01:00
device_id : str = Field (
json_schema_extra = { " description " : " ID of device " , " examples " : [ " device1 " ] }
)
hours : int = Field (
gt = 0 ,
json_schema_extra = { " description " : " Number of hours in the simulation. " , " examples " : [ 24 ] } ,
)
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
class ElectricVehicleResult ( DeviceOptimizeResult ) :
""" Result class containing information related to the electric vehicle ' s charging and discharging behavior. """
2025-11-10 16:57:44 +01:00
device_id : str = Field (
json_schema_extra = { " description " : " ID of electric vehicle " , " examples " : [ " ev1 " ] }
)
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
charge_array : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Hourly charging status (0 for no charging, 1 for charging). "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
discharge_array : list [ int ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Hourly discharging status (0 for no discharging, 1 for discharging). "
}
)
discharging_efficiency : float = Field (
json_schema_extra = { " description " : " The discharge efficiency as a float.. " }
)
capacity_wh : int = Field (
json_schema_extra = { " description " : " Capacity of the EV’ s battery in watt-hours. " }
)
charging_efficiency : float = Field (
json_schema_extra = { " description " : " Charging efficiency as a float.. " }
)
max_charge_power_w : int = Field (
json_schema_extra = { " description " : " Maximum charging power in watts. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
soc_wh : float = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " State of charge of the battery in watt-hours at the start of the simulation. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
initial_soc_percentage : int = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " State of charge at the start of the simulation in percentage. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
@field_validator ( " discharge_array " , " charge_array " , mode = " before " )
def convert_numpy ( cls , field : Any ) - > Any :
return NumpyEncoder . convert_numpy ( field ) [ 0 ]
class GeneticSimulationResult ( GeneticParametersBaseModel ) :
""" This object contains the results of the simulation and provides insights into various parameters over the entire forecast period. """
2025-11-10 16:57:44 +01:00
Last_Wh_pro_Stunde : list [ float ] = Field ( json_schema_extra = { " description " : " TBD " } )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
EAuto_SoC_pro_Stunde : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " The state of charge of the EV for each hour. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Einnahmen_Euro_pro_Stunde : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " The revenue from grid feed-in or other sources in euros per hour. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Gesamt_Verluste : float = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " The total losses in watt-hours over the entire period. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Gesamtbilanz_Euro : float = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " The total balance of revenues minus costs in euros. " }
)
Gesamteinnahmen_Euro : float = Field (
json_schema_extra = { " description " : " The total revenues in euros. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
2025-11-10 16:57:44 +01:00
Gesamtkosten_Euro : float = Field ( json_schema_extra = { " description " : " The total costs in euros. " } )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
Home_appliance_wh_per_hour : list [ Optional [ float ] ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " The energy consumption of a household appliance in watt-hours per hour. "
}
)
Kosten_Euro_pro_Stunde : list [ float ] = Field (
json_schema_extra = { " description " : " The costs in euros per hour. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Netzbezug_Wh_pro_Stunde : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " The grid energy drawn in watt-hours per hour. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Netzeinspeisung_Wh_pro_Stunde : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " The energy fed into the grid in watt-hours per hour. " }
)
Verluste_Pro_Stunde : list [ float ] = Field (
json_schema_extra = { " description " : " The losses in watt-hours per hour. " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
akku_soc_pro_stunde : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " The state of charge of the battery (not the EV) in percentage per hour. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
Electricity_price : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = { " description " : " Used Electricity Price, including predictions " }
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
@field_validator (
" Last_Wh_pro_Stunde " ,
" Netzeinspeisung_Wh_pro_Stunde " ,
" akku_soc_pro_stunde " ,
" Netzbezug_Wh_pro_Stunde " ,
" Kosten_Euro_pro_Stunde " ,
" Einnahmen_Euro_pro_Stunde " ,
" EAuto_SoC_pro_Stunde " ,
" Verluste_Pro_Stunde " ,
" Home_appliance_wh_per_hour " ,
" Electricity_price " ,
mode = " before " ,
)
def convert_numpy ( cls , field : Any ) - > Any :
return NumpyEncoder . convert_numpy ( field ) [ 0 ]
2025-11-08 15:42:18 +01:00
class GeneticSolution ( ConfigMixin , GeneticParametersBaseModel ) :
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
""" **Note**: The first value of " Last_Wh_per_hour " , " Netzeinspeisung_Wh_per_hour " , and " Netzbezug_Wh_per_hour " , will be set to null in the JSON output and represented as NaN or None in the corresponding classes ' data returns. This approach is adopted to ensure that the current hour ' s processing remains unchanged. """
ac_charge : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Array with AC charging values as relative power (0.0-1.0), other values set to 0. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
dc_charge : list [ float ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Array with DC charging values as relative power (0-1), other values set to 0. "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
discharge_allowed : list [ int ] = Field (
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Array with discharge values (1 for discharge, 0 otherwise). "
}
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
2025-11-10 16:57:44 +01:00
eautocharge_hours_float : Optional [ list [ float ] ] = Field ( json_schema_extra = { " description " : " TBD " } )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
result : GeneticSimulationResult
eauto_obj : Optional [ ElectricVehicleResult ]
start_solution : Optional [ list [ float ] ] = Field (
default = None ,
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " An array of binary values (0 or 1) representing a possible starting solution for the simulation. "
} ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
washingstart : Optional [ int ] = Field (
default = None ,
2025-11-10 16:57:44 +01:00
json_schema_extra = {
" description " : " Can be `null` or contain an object representing the start of washing (if applicable). "
} ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
@field_validator (
" ac_charge " ,
" dc_charge " ,
" discharge_allowed " ,
mode = " before " ,
)
def convert_numpy ( cls , field : Any ) - > Any :
return NumpyEncoder . convert_numpy ( field ) [ 0 ]
@field_validator (
" eauto_obj " ,
mode = " before " ,
)
def convert_eauto ( cls , field : Any ) - > Any :
if isinstance ( field , Battery ) :
return ElectricVehicleResult ( * * field . to_dict ( ) )
return field
def _battery_operation_from_solution (
self ,
ac_charge : float ,
dc_charge : float ,
discharge_allowed : bool ,
) - > tuple [ BatteryOperationMode , float ] :
""" Maps low-level solution to a representative operation mode and factor.
Args :
ac_charge ( float ) : Allowed AC - side charging power ( relative units ) .
dc_charge ( float ) : Allowed DC - side charging power ( relative units ) .
discharge_allowed ( bool ) : Whether discharging is permitted .
Returns :
tuple [ BatteryOperationMode , float ] :
A tuple containing :
- ` BatteryOperationMode ` : the representative high - level operation mode .
- ` float ` : the operation factor corresponding to the active signal .
Notes :
- The mapping prioritizes AC charge > DC charge > discharge .
- Multiple strategies can produce the same low - level signals ; this function
returns a representative mode based on a defined priority order .
"""
# (0,0,0) → Nothing allowed
if ac_charge < = 0.0 and dc_charge < = 0.0 and not discharge_allowed :
return BatteryOperationMode . IDLE , 1.0
# (0,0,1) → Discharge only
if ac_charge < = 0.0 and dc_charge < = 0.0 and discharge_allowed :
return BatteryOperationMode . PEAK_SHAVING , 1.0
# (ac>0,0,0) → AC charge only
if ac_charge > 0.0 and dc_charge < = 0.0 and not discharge_allowed :
return BatteryOperationMode . GRID_SUPPORT_IMPORT , ac_charge
# (0,dc>0,0) → DC charge only
if ac_charge < = 0.0 and dc_charge > 0.0 and not discharge_allowed :
return BatteryOperationMode . NON_EXPORT , dc_charge
# (ac>0,dc>0,0) → Both charge paths, no discharge
if ac_charge > 0.0 and dc_charge > 0.0 and not discharge_allowed :
return BatteryOperationMode . FORCED_CHARGE , ac_charge
# (ac>0,0,1) → AC charge + discharge - does not make sense
if ac_charge > 0.0 and dc_charge < = 0.0 and discharge_allowed :
raise ValueError (
f " Illegal state: ac_charge: { ac_charge } and discharge_allowed: { discharge_allowed } "
)
# (0,dc>0,1) → DC charge + discharge
if ac_charge < = 0.0 and dc_charge > 0.0 and discharge_allowed :
return BatteryOperationMode . SELF_CONSUMPTION , dc_charge
# (ac>0,dc>0,1) → Fully flexible - does not make sense
if ac_charge > 0.0 and dc_charge > 0.0 and discharge_allowed :
raise ValueError (
f " Illegal state: ac_charge: { ac_charge } and discharge_allowed: { discharge_allowed } "
)
# Fallback → safe idle
return BatteryOperationMode . IDLE , 1.0
def optimization_solution ( self ) - > OptimizationSolution :
""" Provide the genetic solution as a general optimization solution.
The battery modes are controlled by the grid control triggers :
- ac_charge : charge from grid
- discharge_allowed : discharge to grid
The following battery modes are supported :
- SELF_CONSUMPTION : ac_charge == 0 and discharge_allowed == 0
- GRID_SUPPORT_EXPORT : ac_charge == 0 and discharge_allowed == 1
- GRID_SUPPORT_IMPORT : ac_charge > 0 and discharge_allowed == 0 or 1
"""
from akkudoktoreos . core . ems import get_ems
start_datetime = get_ems ( ) . start_datetime
2025-11-08 15:42:18 +01:00
start_day_hour = start_datetime . in_timezone ( self . config . general . timezone ) . hour
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
interval_hours = 1
2025-11-01 00:49:11 +01:00
power_to_energy_per_interval_factor = 1.0
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
# --- Create index based on list length and interval ---
2025-11-08 15:42:18 +01:00
# Ensure we only use the minimum of results and commands if differing
periods = min ( len ( self . result . Kosten_Euro_pro_Stunde ) , len ( self . ac_charge ) - start_day_hour )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
time_index = pd . date_range (
start = start_datetime ,
2025-11-08 15:42:18 +01:00
periods = periods ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
freq = f " { interval_hours } h " ,
)
2025-11-08 15:42:18 +01:00
n_points = len ( time_index )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
end_datetime = start_datetime . add ( hours = n_points )
2025-11-01 00:49:11 +01:00
# Fill solution into dataframe with correct column names
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
# - load_energy_wh: Load of all energy consumers in wh"
# - grid_energy_wh: Grid energy feed in (negative) or consumption (positive) in wh"
# - costs_amt: Costs in money amount"
# - revenue_amt: Revenue in money amount"
# - losses_energy_wh: Energy losses in wh"
# - <device-id>_<operation>_op_mode: Operation mode of the device (1.0 when active)."
# - <device-id>_<operation>_op_factor: Operation mode factor of the device."
# - <device-id>_soc_factor: State of charge of a battery/ electric vehicle device as factor of total capacity."
# - <device-id>_energy_wh: Energy consumption (positive) of a device in wh."
2025-11-01 00:49:11 +01:00
solution = pd . DataFrame (
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
{
" date_time " : time_index ,
2025-11-08 15:42:18 +01:00
# result starts at start_day_hour
" load_energy_wh " : self . result . Last_Wh_pro_Stunde [ : n_points ] ,
" grid_feedin_energy_wh " : self . result . Netzeinspeisung_Wh_pro_Stunde [ : n_points ] ,
" grid_consumption_energy_wh " : self . result . Netzbezug_Wh_pro_Stunde [ : n_points ] ,
" costs_amt " : self . result . Kosten_Euro_pro_Stunde [ : n_points ] ,
" revenue_amt " : self . result . Einnahmen_Euro_pro_Stunde [ : n_points ] ,
" losses_energy_wh " : self . result . Verluste_Pro_Stunde [ : n_points ] ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
} ,
index = time_index ,
)
# Add battery data
2025-11-08 15:42:18 +01:00
solution [ " battery1_soc_factor " ] = [
v / 100
for v in self . result . akku_soc_pro_stunde [ : n_points ] # result starts at start_day_hour
]
operation : dict [ str , list [ float ] ] = {
" genetic_ac_charge_factor " : [ ] ,
" genetic_dc_charge_factor " : [ ] ,
" genetic_discharge_allowed_factor " : [ ] ,
}
# ac_charge, dc_charge, discharge_allowed start at hour 0 of start day
for hour_idx , rate in enumerate ( self . ac_charge ) :
if hour_idx < start_day_hour :
continue
if hour_idx > = start_day_hour + n_points :
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
break
2025-11-08 15:42:18 +01:00
ac_charge_hour = self . ac_charge [ hour_idx ]
dc_charge_hour = self . dc_charge [ hour_idx ]
discharge_allowed_hour = bool ( self . discharge_allowed [ hour_idx ] )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
operation_mode , operation_mode_factor = self . _battery_operation_from_solution (
2025-11-08 15:42:18 +01:00
ac_charge_hour , dc_charge_hour , discharge_allowed_hour
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
2025-11-08 15:42:18 +01:00
operation [ " genetic_ac_charge_factor " ] . append ( ac_charge_hour )
operation [ " genetic_dc_charge_factor " ] . append ( dc_charge_hour )
operation [ " genetic_discharge_allowed_factor " ] . append ( discharge_allowed_hour )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
for mode in BatteryOperationMode :
mode_key = f " battery1_ { mode . lower ( ) } _op_mode "
factor_key = f " battery1_ { mode . lower ( ) } _op_factor "
if mode_key not in operation . keys ( ) :
operation [ mode_key ] = [ ]
operation [ factor_key ] = [ ]
if mode == operation_mode :
operation [ mode_key ] . append ( 1.0 )
operation [ factor_key ] . append ( operation_mode_factor )
else :
operation [ mode_key ] . append ( 0.0 )
operation [ factor_key ] . append ( 0.0 )
for key in operation . keys ( ) :
2025-11-08 15:42:18 +01:00
if len ( operation [ key ] ) != n_points :
error_msg = f " instruction { key } has invalid length { len ( operation [ key ] ) } - expected { n_points } "
logger . error ( error_msg )
raise ValueError ( error_msg )
2025-11-01 00:49:11 +01:00
solution [ key ] = operation [ key ]
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
2025-11-01 00:49:11 +01:00
# Add EV battery solution
2025-11-08 15:42:18 +01:00
# eautocharge_hours_float start at hour 0 of start day
# result.EAuto_SoC_pro_Stunde start at start_datetime.hour
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
if self . eauto_obj :
if self . eautocharge_hours_float is None :
# Electric vehicle is full enough. No load times.
2025-11-01 00:49:11 +01:00
solution [ f " { self . eauto_obj . device_id } _soc_factor " ] = [
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
self . eauto_obj . initial_soc_percentage / 100.0
] * n_points
2025-11-08 15:42:18 +01:00
solution [ " genetic_ev_charge_factor " ] = [ 0.0 ] * n_points
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
# operation modes
operation_mode = BatteryOperationMode . IDLE
for mode in BatteryOperationMode :
mode_key = f " { self . eauto_obj . device_id } _ { mode . lower ( ) } _op_mode "
factor_key = f " { self . eauto_obj . device_id } _ { mode . lower ( ) } _op_factor "
if mode == operation_mode :
2025-11-01 00:49:11 +01:00
solution [ mode_key ] = [ 1.0 ] * n_points
solution [ factor_key ] = [ 1.0 ] * n_points
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
else :
2025-11-01 00:49:11 +01:00
solution [ mode_key ] = [ 0.0 ] * n_points
solution [ factor_key ] = [ 0.0 ] * n_points
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
else :
2025-11-01 00:49:11 +01:00
solution [ f " { self . eauto_obj . device_id } _soc_factor " ] = [
2025-11-08 15:42:18 +01:00
v / 100 for v in self . result . EAuto_SoC_pro_Stunde [ : n_points ]
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
]
2025-11-08 15:42:18 +01:00
operation = {
" genetic_ev_charge_factor " : [ ] ,
}
for hour_idx , rate in enumerate ( self . eautocharge_hours_float ) :
if hour_idx < start_day_hour :
continue
if hour_idx > = start_day_hour + n_points :
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
break
2025-11-08 15:42:18 +01:00
operation [ " genetic_ev_charge_factor " ] . append ( rate )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
operation_mode , operation_mode_factor = self . _battery_operation_from_solution (
rate , 0.0 , False
)
for mode in BatteryOperationMode :
mode_key = f " { self . eauto_obj . device_id } _ { mode . lower ( ) } _op_mode "
factor_key = f " { self . eauto_obj . device_id } _ { mode . lower ( ) } _op_factor "
if mode_key not in operation . keys ( ) :
operation [ mode_key ] = [ ]
operation [ factor_key ] = [ ]
if mode == operation_mode :
operation [ mode_key ] . append ( 1.0 )
operation [ factor_key ] . append ( operation_mode_factor )
else :
operation [ mode_key ] . append ( 0.0 )
operation [ factor_key ] . append ( 0.0 )
for key in operation . keys ( ) :
2025-11-08 15:42:18 +01:00
if len ( operation [ key ] ) != n_points :
error_msg = f " instruction { key } has invalid length { len ( operation [ key ] ) } - expected { n_points } "
logger . error ( error_msg )
raise ValueError ( error_msg )
2025-11-01 00:49:11 +01:00
solution [ key ] = operation [ key ]
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
# Add home appliance data
if self . washingstart :
2025-11-08 15:42:18 +01:00
# result starts at start_day_hour
solution [ " homeappliance1_energy_wh " ] = self . result . Home_appliance_wh_per_hour [ : n_points ]
2025-11-01 00:49:11 +01:00
# Fill prediction into dataframe with correct column names
# - pvforecast_ac_energy_wh_energy_wh: PV energy prediction (positive) in wh
# - elec_price_amt_kwh: Electricity price prediction in money per kwh
# - weather_temp_air_celcius: Temperature in °C"
# - loadforecast_energy_wh: Load energy prediction in wh
# - loadakkudoktor_std_energy_wh: Load energy standard deviation prediction in wh
# - loadakkudoktor_mean_energy_wh: Load mean energy prediction in wh
prediction = pd . DataFrame (
{
" date_time " : time_index ,
} ,
index = time_index ,
)
pred = get_prediction ( )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
2025-11-01 00:49:11 +01:00
if " pvforecast_ac_power " in pred . record_keys :
prediction [ " pvforecast_ac_energy_wh " ] = (
pred . key_to_array (
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
key = " pvforecast_ac_power " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
* power_to_energy_per_interval_factor
) . tolist ( )
2025-11-01 00:49:11 +01:00
if " pvforecast_dc_power " in pred . record_keys :
prediction [ " pvforecast_dc_energy_wh " ] = (
pred . key_to_array (
key = " pvforecast_dc_power " ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
2025-11-01 00:49:11 +01:00
* power_to_energy_per_interval_factor
) . tolist ( )
if " elecprice_marketprice_wh " in pred . record_keys :
prediction [ " elec_price_amt_kwh " ] = (
pred . key_to_array (
key = " elecprice_marketprice_wh " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " ffill " ,
)
* 1000
) . tolist ( )
if " feed_in_tariff_wh " in pred . record_keys :
prediction [ " feed_in_tariff_amt_kwh " ] = (
pred . key_to_array (
key = " feed_in_tariff_wh " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
* 1000
) . tolist ( )
if " weather_temp_air " in pred . record_keys :
prediction [ " weather_air_temp_celcius " ] = pred . key_to_array (
key = " weather_temp_air " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
) . tolist ( )
if " loadforecast_power_w " in pred . record_keys :
prediction [ " loadforecast_energy_wh " ] = (
pred . key_to_array (
key = " loadforecast_power_w " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
* power_to_energy_per_interval_factor
) . tolist ( )
if " loadakkudoktor_std_power_w " in pred . record_keys :
prediction [ " loadakkudoktor_std_energy_wh " ] = (
pred . key_to_array (
key = " loadakkudoktor_std_power_w " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
* power_to_energy_per_interval_factor
) . tolist ( )
if " loadakkudoktor_mean_power_w " in pred . record_keys :
prediction [ " loadakkudoktor_mean_energy_wh " ] = (
pred . key_to_array (
key = " loadakkudoktor_mean_power_w " ,
start_datetime = start_datetime ,
end_datetime = end_datetime ,
interval = to_duration ( f " { interval_hours } hours " ) ,
fill_method = " linear " ,
)
* power_to_energy_per_interval_factor
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
) . tolist ( )
2025-11-01 00:49:11 +01:00
optimization_solution = OptimizationSolution (
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
id = f " optimization-genetic@ { to_datetime ( as_string = True ) } " ,
generated_at = to_datetime ( ) ,
comment = " Optimization solution derived from GeneticSolution. " ,
valid_from = start_datetime ,
2025-11-08 15:42:18 +01:00
valid_until = start_datetime . add ( hours = self . config . optimization . horizon_hours ) ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
total_losses_energy_wh = self . result . Gesamt_Verluste ,
total_revenues_amt = self . result . Gesamteinnahmen_Euro ,
total_costs_amt = self . result . Gesamtkosten_Euro ,
2025-11-08 15:42:18 +01:00
fitness_score = {
self . result . Gesamtkosten_Euro ,
} ,
2025-11-01 00:49:11 +01:00
prediction = PydanticDateTimeDataFrame . from_dataframe ( prediction ) ,
solution = PydanticDateTimeDataFrame . from_dataframe ( solution ) ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
2025-11-01 00:49:11 +01:00
return optimization_solution
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
def energy_management_plan ( self ) - > EnergyManagementPlan :
""" Provide the genetic solution as an energy management plan. """
from akkudoktoreos . core . ems import get_ems
start_datetime = get_ems ( ) . start_datetime
2025-11-08 15:42:18 +01:00
start_day_hour = start_datetime . in_timezone ( self . config . general . timezone ) . hour
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
plan = EnergyManagementPlan (
id = f " plan-genetic@ { to_datetime ( as_string = True ) } " ,
generated_at = to_datetime ( ) ,
instructions = [ ] ,
comment = " Energy management plan derived from GeneticSolution. " ,
)
# Add battery instructions (fill rate based control)
last_operation_mode : Optional [ str ] = None
last_operation_mode_factor : Optional [ float ] = None
resource_id = " battery1 "
2025-11-08 15:42:18 +01:00
# ac_charge, dc_charge, discharge_allowed start at hour 0 of start day
logger . debug ( " BAT: {} - {} " , resource_id , self . ac_charge [ start_day_hour : ] )
for hour_idx , rate in enumerate ( self . ac_charge ) :
if hour_idx < start_day_hour :
continue
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
operation_mode , operation_mode_factor = self . _battery_operation_from_solution (
2025-11-08 15:42:18 +01:00
self . ac_charge [ hour_idx ] ,
self . dc_charge [ hour_idx ] ,
bool ( self . discharge_allowed [ hour_idx ] ) ,
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
)
if (
operation_mode == last_operation_mode
and operation_mode_factor == last_operation_mode_factor
) :
# Skip, we already added the instruction
continue
last_operation_mode = operation_mode
last_operation_mode_factor = operation_mode_factor
2025-11-08 15:42:18 +01:00
execution_time = start_datetime . add ( hours = hour_idx - start_day_hour )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
plan . add_instruction (
FRBCInstruction (
resource_id = resource_id ,
execution_time = execution_time ,
actuator_id = resource_id ,
operation_mode_id = operation_mode ,
operation_mode_factor = operation_mode_factor ,
)
)
# Add EV battery instructions (fill rate based control)
2025-11-08 15:42:18 +01:00
# eautocharge_hours_float start at hour 0 of start day
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
if self . eauto_obj :
resource_id = self . eauto_obj . device_id
if self . eautocharge_hours_float is None :
# Electric vehicle is full enough. No load times.
logger . debug ( " EV: {} - SoC >= min, no optimization " , resource_id )
plan . add_instruction (
FRBCInstruction (
resource_id = resource_id ,
execution_time = start_datetime ,
actuator_id = resource_id ,
operation_mode_id = BatteryOperationMode . IDLE ,
operation_mode_factor = 1.0 ,
)
)
else :
last_operation_mode = None
last_operation_mode_factor = None
2025-11-08 15:42:18 +01:00
logger . debug (
" EV: {} - {} " , resource_id , self . eautocharge_hours_float [ start_day_hour : ]
)
for hour_idx , rate in enumerate ( self . eautocharge_hours_float ) :
if hour_idx < start_day_hour :
continue
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
operation_mode , operation_mode_factor = self . _battery_operation_from_solution (
rate , 0.0 , False
)
if (
operation_mode == last_operation_mode
and operation_mode_factor == last_operation_mode_factor
) :
# Skip, we already added the instruction
continue
last_operation_mode = operation_mode
last_operation_mode_factor = operation_mode_factor
2025-11-08 15:42:18 +01:00
execution_time = start_datetime . add ( hours = hour_idx - start_day_hour )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
plan . add_instruction (
FRBCInstruction (
resource_id = resource_id ,
execution_time = execution_time ,
actuator_id = resource_id ,
operation_mode_id = operation_mode ,
operation_mode_factor = operation_mode_factor ,
)
)
# Add home appliance instructions (demand driven based control)
if self . washingstart :
resource_id = " homeappliance1 "
operation_mode = ApplianceOperationMode . RUN # type: ignore[assignment]
operation_mode_factor = 1.0
2025-11-08 15:42:18 +01:00
execution_time = start_datetime . add ( hours = self . washingstart - start_day_hour )
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
plan . add_instruction (
DDBCInstruction (
resource_id = resource_id ,
execution_time = execution_time ,
actuator_id = resource_id ,
operation_mode_id = operation_mode ,
operation_mode_factor = operation_mode_factor ,
)
)
return plan