2024-10-06 18:16:43 +02:00
|
|
|
import json
|
|
|
|
from pathlib import Path
|
2024-11-10 23:22:30 +01:00
|
|
|
from typing import Any
|
|
|
|
from unittest.mock import patch
|
2024-10-06 18:16:43 +02:00
|
|
|
|
2024-10-04 19:03:41 +02:00
|
|
|
import pytest
|
|
|
|
|
2024-10-06 12:33:18 +02:00
|
|
|
from akkudoktoreos.class_optimize import optimization_problem
|
2024-10-04 19:03:41 +02:00
|
|
|
|
2024-10-06 18:16:43 +02:00
|
|
|
DIR_TESTDATA = Path(__file__).parent / "testdata"
|
2024-10-04 19:03:41 +02:00
|
|
|
|
|
|
|
|
2024-11-10 23:22:30 +01:00
|
|
|
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
|
|
|
|
assert set(actual) == set(expected)
|
|
|
|
|
|
|
|
for key, value in expected.items():
|
|
|
|
if isinstance(value, dict):
|
|
|
|
assert isinstance(actual[key], dict)
|
|
|
|
compare_dict(actual[key], value)
|
|
|
|
elif isinstance(value, list):
|
|
|
|
assert isinstance(actual[key], list)
|
|
|
|
assert actual[key] == pytest.approx(value)
|
|
|
|
else:
|
|
|
|
assert actual[key] == pytest.approx(value)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"fn_in, fn_out, ngen",
|
|
|
|
[
|
|
|
|
("optimize_input_1.json", "optimize_result_1.json", 3),
|
|
|
|
("optimize_input_2.json", "optimize_result_2.json", 3),
|
|
|
|
("optimize_input_2.json", "optimize_result_2_full.json", 400),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
@patch("akkudoktoreos.class_optimize.visualisiere_ergebnisse")
|
|
|
|
def test_optimize(visualisiere_ergebnisse_patch, fn_in: str, fn_out: str, ngen: int, is_full_run):
|
2024-10-06 18:16:43 +02:00
|
|
|
# Load input and output data
|
|
|
|
with open(DIR_TESTDATA / fn_in, "r") as f_in:
|
|
|
|
input_data = json.load(f_in)
|
2024-10-04 19:03:41 +02:00
|
|
|
|
2024-10-06 18:16:43 +02:00
|
|
|
with open(DIR_TESTDATA / fn_out, "r") as f_out:
|
|
|
|
expected_output_data = json.load(f_out)
|
2024-10-04 19:03:41 +02:00
|
|
|
|
|
|
|
opt_class = optimization_problem(
|
|
|
|
prediction_hours=48, strafe=10, optimization_hours=24, fixed_seed=42
|
|
|
|
)
|
2024-10-06 18:16:43 +02:00
|
|
|
start_hour = 10
|
2024-10-04 19:03:41 +02:00
|
|
|
|
2024-11-10 23:22:30 +01:00
|
|
|
if ngen > 10 and not is_full_run:
|
|
|
|
pytest.skip()
|
|
|
|
|
2024-10-04 19:03:41 +02:00
|
|
|
# Call the optimization function
|
2024-11-10 23:22:30 +01:00
|
|
|
ergebnis = opt_class.optimierung_ems(parameter=input_data, start_hour=start_hour, ngen=ngen)
|
|
|
|
# with open(f"new_{fn_out}", "w") as f_out:
|
|
|
|
# from akkudoktoreos.class_numpy_encoder import NumpyEncoder
|
|
|
|
# json_data_str = NumpyEncoder.dumps(ergebnis)
|
|
|
|
# json.dump(json.loads(json_data_str), f_out, indent=4)
|
2024-10-04 19:03:41 +02:00
|
|
|
|
2024-10-06 18:16:43 +02:00
|
|
|
# Assert that the output contains all expected entries.
|
|
|
|
# This does not assert that the optimization always gives the same result!
|
|
|
|
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
|
2024-11-10 23:22:30 +01:00
|
|
|
compare_dict(ergebnis, expected_output_data)
|
2024-10-07 19:44:07 +02:00
|
|
|
|
|
|
|
# The function creates a visualization result PDF as a side-effect.
|
2024-11-10 23:22:30 +01:00
|
|
|
visualisiere_ergebnisse_patch.assert_called_once()
|