mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
* Integrated single_test_optimization into pytest to run a basic optimization test with tolerance set to 1e-6, ensuring quick detection of deviations. * Added a long-run test (400 generations, like single_test_optimization), which can be triggered using --full-run in pytest. * Mocked PDF creation in optimization tests and added a new PDF generation test with image comparison validation. Note: Current tolerance is set to 1e-6; feedback on whether this tolerance is tight enough is welcome. --------- Co-authored-by: Normann <github@koldrack.com> Co-authored-by: Michael Osthege <michael.osthege@outlook.com>
66 lines
2.3 KiB
Python
66 lines
2.3 KiB
Python
import json
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from akkudoktoreos.class_optimize import optimization_problem
|
|
|
|
DIR_TESTDATA = Path(__file__).parent / "testdata"
|
|
|
|
|
|
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
|
|
assert set(actual) == set(expected)
|
|
|
|
for key, value in expected.items():
|
|
if isinstance(value, dict):
|
|
assert isinstance(actual[key], dict)
|
|
compare_dict(actual[key], value)
|
|
elif isinstance(value, list):
|
|
assert isinstance(actual[key], list)
|
|
assert actual[key] == pytest.approx(value)
|
|
else:
|
|
assert actual[key] == pytest.approx(value)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"fn_in, fn_out, ngen",
|
|
[
|
|
("optimize_input_1.json", "optimize_result_1.json", 3),
|
|
("optimize_input_2.json", "optimize_result_2.json", 3),
|
|
("optimize_input_2.json", "optimize_result_2_full.json", 400),
|
|
],
|
|
)
|
|
@patch("akkudoktoreos.class_optimize.visualisiere_ergebnisse")
|
|
def test_optimize(visualisiere_ergebnisse_patch, fn_in: str, fn_out: str, ngen: int, is_full_run):
|
|
# Load input and output data
|
|
with open(DIR_TESTDATA / fn_in, "r") as f_in:
|
|
input_data = json.load(f_in)
|
|
|
|
with open(DIR_TESTDATA / fn_out, "r") as f_out:
|
|
expected_output_data = json.load(f_out)
|
|
|
|
opt_class = optimization_problem(
|
|
prediction_hours=48, strafe=10, optimization_hours=24, fixed_seed=42
|
|
)
|
|
start_hour = 10
|
|
|
|
if ngen > 10 and not is_full_run:
|
|
pytest.skip()
|
|
|
|
# Call the optimization function
|
|
ergebnis = opt_class.optimierung_ems(parameter=input_data, start_hour=start_hour, ngen=ngen)
|
|
# with open(f"new_{fn_out}", "w") as f_out:
|
|
# from akkudoktoreos.class_numpy_encoder import NumpyEncoder
|
|
# json_data_str = NumpyEncoder.dumps(ergebnis)
|
|
# json.dump(json.loads(json_data_str), f_out, indent=4)
|
|
|
|
# Assert that the output contains all expected entries.
|
|
# This does not assert that the optimization always gives the same result!
|
|
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
|
|
compare_dict(ergebnis, expected_output_data)
|
|
|
|
# The function creates a visualization result PDF as a side-effect.
|
|
visualisiere_ergebnisse_patch.assert_called_once()
|