mirror of
				https://github.com/Akkudoktor-EOS/EOS.git
				synced 2025-11-04 00:36:21 +00:00 
			
		
		
		
	Removed comments
This commit is contained in:
		@@ -2,9 +2,7 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import random
 | 
					import random
 | 
				
			||||||
 | 
					 | 
				
			||||||
from pprint import pprint
 | 
					from pprint import pprint
 | 
				
			||||||
 | 
					 | 
				
			||||||
import matplotlib
 | 
					import matplotlib
 | 
				
			||||||
matplotlib.use('Agg')  # Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
 | 
					matplotlib.use('Agg')  # Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
 | 
				
			||||||
import matplotlib.pyplot as plt
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
@@ -31,27 +29,6 @@ app = Flask(__name__)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
opt_class = optimization_problem(prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours)
 | 
					opt_class = optimization_problem(prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# @app.route('/last_correction', methods=['GET'])
 | 
					 | 
				
			||||||
# def flask_last_correction():
 | 
					 | 
				
			||||||
#     if request.method == 'GET':
 | 
					 | 
				
			||||||
#         year_energy = float(request.args.get("year_energy"))
 | 
					 | 
				
			||||||
#         date_now, date = get_start_enddate(prediction_hours, startdate=datetime.now().date())
 | 
					 | 
				
			||||||
#         ###############
 | 
					 | 
				
			||||||
#         # Load Forecast
 | 
					 | 
				
			||||||
#         ###############
 | 
					 | 
				
			||||||
#         lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
 | 
					 | 
				
			||||||
#         leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[0]  # Only the expected value!
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
#         gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
 | 
					 | 
				
			||||||
#         gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
 | 
					 | 
				
			||||||
#         # ###############
 | 
					 | 
				
			||||||
#         # Heat Pump (WP)
 | 
					 | 
				
			||||||
#         # ##############
 | 
					 | 
				
			||||||
#         # leistung_wp = wp.simulate_24h(temperature_forecast)
 | 
					 | 
				
			||||||
#         # gesamtlast.hinzufuegen("Heatpump", leistung_wp)
 | 
					 | 
				
			||||||
#         last = gesamtlast.gesamtlast_berechnen()
 | 
					 | 
				
			||||||
#         print(last)
 | 
					 | 
				
			||||||
#         return jsonify(last.tolist())
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
@app.route('/soc', methods=['GET'])
 | 
					@app.route('/soc', methods=['GET'])
 | 
				
			||||||
def flask_soc():
 | 
					def flask_soc():
 | 
				
			||||||
@@ -146,66 +123,6 @@ def flask_gesamtlast():
 | 
				
			|||||||
    last = gesamtlast.gesamtlast_berechnen()  # Compute total load
 | 
					    last = gesamtlast.gesamtlast_berechnen()  # Compute total load
 | 
				
			||||||
    return jsonify(last.tolist())
 | 
					    return jsonify(last.tolist())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# @app.route('/gesamtlast', methods=['GET'])
 | 
					 | 
				
			||||||
# def flask_gesamtlast():
 | 
					 | 
				
			||||||
#     if request.method == 'GET':
 | 
					 | 
				
			||||||
#         year_energy = float(request.args.get("year_energy"))  # Get annual energy value from query parameters
 | 
					 | 
				
			||||||
#         prediction_hours = int(request.args.get("hours", 48))  # Default to 48 hours if not specified
 | 
					 | 
				
			||||||
#         date_now = datetime.now()  # Get the current date and time
 | 
					 | 
				
			||||||
#         end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S')  # Calculate end date based on prediction hours
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         ###############
 | 
					 | 
				
			||||||
#         # Load Forecast
 | 
					 | 
				
			||||||
#         ###############
 | 
					 | 
				
			||||||
#         # Instantiate LastEstimator to retrieve measured data
 | 
					 | 
				
			||||||
#         estimator = LastEstimator()
 | 
					 | 
				
			||||||
#         start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d')  # Start date: last 60 days
 | 
					 | 
				
			||||||
#         end_date = date_now.strftime('%Y-%m-%d')  # Current date
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         last_df = estimator.get_last(start_date, end_date)  # Get last load data
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         selected_columns = last_df[['timestamp', 'Last']]  # Select relevant columns
 | 
					 | 
				
			||||||
#         selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')  # Floor timestamps to the nearest hour
 | 
					 | 
				
			||||||
#         selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')  # Convert 'Last' to numeric, coerce errors
 | 
					 | 
				
			||||||
#         cleaned_data = selected_columns.dropna()  # Clean data by dropping NaN values
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         # Instantiate LoadForecast
 | 
					 | 
				
			||||||
#         lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         # Generate forecast data
 | 
					 | 
				
			||||||
#         forecast_list = []  # List to hold daily forecasts
 | 
					 | 
				
			||||||
#         for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):  # Iterate over date range
 | 
					 | 
				
			||||||
#             date_str = single_date.strftime('%Y-%m-%d')  # Format date
 | 
					 | 
				
			||||||
#             daily_forecast = lf.get_daily_stats(date_str)  # Get daily stats from LoadForecast
 | 
					 | 
				
			||||||
#             mean_values = daily_forecast[0]  # Extract mean values
 | 
					 | 
				
			||||||
#             hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]  # Generate hours for the day
 | 
					 | 
				
			||||||
#             daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})  # Create DataFrame for daily forecast
 | 
					 | 
				
			||||||
#             forecast_list.append(daily_forecast_df)  # Append to the list
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         forecast_df = pd.concat(forecast_list, ignore_index=True)  # Concatenate all daily forecasts
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         # Create LoadPredictionAdjuster instance
 | 
					 | 
				
			||||||
#         adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
 | 
					 | 
				
			||||||
#         adjuster.calculate_weighted_mean()  # Calculate weighted mean for adjustments
 | 
					 | 
				
			||||||
#         adjuster.adjust_predictions()  # Adjust predictions based on measured data
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         # Predict the next hours
 | 
					 | 
				
			||||||
#         future_predictions = adjuster.predict_next_hours(prediction_hours)  # Predict future load
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         leistung_haushalt = future_predictions['Adjusted Pred'].values  # Extract household power predictions
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         gesamtlast = Gesamtlast(prediction_hours=prediction_hours)  # Create Gesamtlast instance
 | 
					 | 
				
			||||||
#         gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)  # Add household load to total load calculation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         # ###############
 | 
					 | 
				
			||||||
#         # # WP (Heat Pump)
 | 
					 | 
				
			||||||
#         # ##############
 | 
					 | 
				
			||||||
#         # leistung_wp = wp.simulate_24h(temperature_forecast)  # Simulate heat pump load for 24 hours
 | 
					 | 
				
			||||||
#         # gesamtlast.hinzufuegen("Heatpump", leistung_wp)  # Add heat pump load to total load calculation
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#         last = gesamtlast.gesamtlast_berechnen()  # Calculate total load
 | 
					 | 
				
			||||||
#         print(last)  # Output total load
 | 
					 | 
				
			||||||
#         return jsonify(last.tolist())  # Return total load as JSON
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
@app.route('/gesamtlast_simple', methods=['GET'])
 | 
					@app.route('/gesamtlast_simple', methods=['GET'])
 | 
				
			||||||
def flask_gesamtlast_simple():
 | 
					def flask_gesamtlast_simple():
 | 
				
			||||||
@@ -322,8 +239,3 @@ if __name__ == '__main__':
 | 
				
			|||||||
    except Exception as e:
 | 
					    except Exception as e:
 | 
				
			||||||
        print(f"Could not bind to host {host}:{port}. Error: {e}")  # Error handling for binding issues
 | 
					        print(f"Could not bind to host {host}:{port}. Error: {e}")  # Error handling for binding issues
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# PV Forecast:
 | 
					 | 
				
			||||||
#   object {
 | 
					 | 
				
			||||||
#    pvpower: array[48]
 | 
					 | 
				
			||||||
#    temperature: array[48]
 | 
					 | 
				
			||||||
#   }
 | 
					 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user