mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-09-13 07:21:16 +00:00
Fix config and prediction revamp. (#259)
Extend single_test_optimization.py to be able to use real world data from new prediction classes. - .venv/bin/python single_test_optimization.py --real_world --verbose Can also be run with profiling "--profile". Add single_test_prediction.py to fetch predictions from remote prediction providers - .venv/bin/python single_test_prediction.py --verbose --provider-id PVForecastAkkudoktor | more - .venv/bin/python single_test_prediction.py --verbose --provider-id LoadAkkudoktor | more - .venv/bin/python single_test_prediction.py --verbose --provider-id ElecPriceAkkudoktor | more - .venv/bin/python single_test_prediction.py --verbose --provider-id BrightSky | more - .venv/bin/python single_test_prediction.py --verbose --provider-id ClearOutside | more Can also be run with profiling "--profile". single_test_optimization.py is an example on how to retrieve prediction data for optimization and use it to set up the optimization parameters. Changes: - load: Only one load provider at a time (vs. 5 before) Bug fixes: - prediction: only use providers that are enabled to retrieve or set data. - prediction: fix pre pendulum format strings - dataabc: Prevent error when resampling data with no datasets. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
170
single_test_prediction.py
Normal file
170
single_test_prediction.py
Normal file
@@ -0,0 +1,170 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import cProfile
|
||||
import pstats
|
||||
import sys
|
||||
import time
|
||||
|
||||
from akkudoktoreos.config.config import get_config
|
||||
from akkudoktoreos.prediction.prediction import get_prediction
|
||||
|
||||
config_eos = get_config()
|
||||
prediction_eos = get_prediction()
|
||||
|
||||
|
||||
def config_pvforecast() -> dict:
|
||||
"""Configure settings for PV forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
"pvforecast_provider": "PVForecastAkkudoktor",
|
||||
"pvforecast0_peakpower": 5.0,
|
||||
"pvforecast0_surface_azimuth": -10,
|
||||
"pvforecast0_surface_tilt": 7,
|
||||
"pvforecast0_userhorizon": [20, 27, 22, 20],
|
||||
"pvforecast0_inverter_paco": 10000,
|
||||
"pvforecast1_peakpower": 4.8,
|
||||
"pvforecast1_surface_azimuth": -90,
|
||||
"pvforecast1_surface_tilt": 7,
|
||||
"pvforecast1_userhorizon": [30, 30, 30, 50],
|
||||
"pvforecast1_inverter_paco": 10000,
|
||||
"pvforecast2_peakpower": 1.4,
|
||||
"pvforecast2_surface_azimuth": -40,
|
||||
"pvforecast2_surface_tilt": 60,
|
||||
"pvforecast2_userhorizon": [60, 30, 0, 30],
|
||||
"pvforecast2_inverter_paco": 2000,
|
||||
"pvforecast3_peakpower": 1.6,
|
||||
"pvforecast3_surface_azimuth": 5,
|
||||
"pvforecast3_surface_tilt": 45,
|
||||
"pvforecast3_userhorizon": [45, 25, 30, 60],
|
||||
"pvforecast3_inverter_paco": 1400,
|
||||
"pvforecast4_peakpower": None,
|
||||
}
|
||||
return settings
|
||||
|
||||
|
||||
def config_weather() -> dict:
|
||||
"""Configure settings for weather forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
}
|
||||
return settings
|
||||
|
||||
|
||||
def config_elecprice() -> dict:
|
||||
"""Configure settings for electricity price forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
}
|
||||
return settings
|
||||
|
||||
|
||||
def config_load() -> dict:
|
||||
"""Configure settings for load forecast."""
|
||||
settings = {
|
||||
"prediction_hours": 48,
|
||||
"prediction_historic_hours": 24,
|
||||
"latitude": 52.52,
|
||||
"longitude": 13.405,
|
||||
}
|
||||
return settings
|
||||
|
||||
|
||||
def run_prediction(provider_id: str, verbose: bool = False) -> str:
|
||||
"""Run the prediction.
|
||||
|
||||
Args:
|
||||
provider_id (str): ID of prediction provider.
|
||||
verbose (bool, optional): Whether to print verbose output. Defaults to False.
|
||||
|
||||
Returns:
|
||||
dict: Prediction result as a dictionary
|
||||
"""
|
||||
# Initialize the oprediction
|
||||
config_eos = get_config()
|
||||
prediction_eos = get_prediction()
|
||||
if verbose:
|
||||
print(f"\nProvider ID: {provider_id}")
|
||||
if provider_id in ("PVForecastAkkudoktor",):
|
||||
settings = config_pvforecast()
|
||||
settings["pvforecast_provider"] = provider_id
|
||||
elif provider_id in ("BrightSky", "ClearOutside"):
|
||||
settings = config_weather()
|
||||
settings["weather_provider"] = provider_id
|
||||
elif provider_id in ("ElecPriceAkkudoktor",):
|
||||
settings = config_elecprice()
|
||||
settings["elecprice_provider"] = provider_id
|
||||
elif provider_id in ("LoadAkkudoktor",):
|
||||
settings = config_elecprice()
|
||||
settings["loadakkudoktor_year_energy"] = 1000
|
||||
settings["load_provider"] = provider_id
|
||||
else:
|
||||
raise ValueError(f"Unknown provider '{provider_id}'.")
|
||||
config_eos.merge_settings_from_dict(settings)
|
||||
|
||||
prediction_eos.update_data()
|
||||
|
||||
# Return result of prediction
|
||||
provider = prediction_eos.provider_by_id(provider_id)
|
||||
if verbose:
|
||||
for key in provider.record_keys:
|
||||
print(f"\n{key}\n----------")
|
||||
print(f"Array: {provider.key_to_array(key)}")
|
||||
return provider.model_dump_json(indent=4)
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function to run the optimization script with optional profiling."""
|
||||
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
|
||||
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
|
||||
parser.add_argument(
|
||||
"--verbose", action="store_true", help="Enable verbose output during optimization"
|
||||
)
|
||||
parser.add_argument("--provider-id", type=str, default=0, help="Provider ID of prediction")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.profile:
|
||||
# Run with profiling
|
||||
profiler = cProfile.Profile()
|
||||
try:
|
||||
result = profiler.runcall(
|
||||
run_prediction, provider_id=args.provider_id, verbose=args.verbose
|
||||
)
|
||||
# Print profiling statistics
|
||||
stats = pstats.Stats(profiler)
|
||||
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
|
||||
# Print result
|
||||
print("\nPrediction Result:")
|
||||
print(result)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during prediction: {e}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
else:
|
||||
# Run without profiling
|
||||
try:
|
||||
start_time = time.time()
|
||||
result = run_prediction(provider_id=args.provider_id, verbose=args.verbose)
|
||||
end_time = time.time()
|
||||
elapsed_time = end_time - start_time
|
||||
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
|
||||
print("\nPrediction Result:")
|
||||
print(result)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during prediction: {e}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user