mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Moved load_profile db to data
removed comments fixed Bug in visualize.py (extra data empty) removed dead cp
This commit is contained in:
parent
ec1dc87104
commit
caf907a2e5
@ -116,7 +116,8 @@ def flask_gesamtlast():
|
||||
measured_data["time"] = measured_data["time"].dt.tz_localize(None)
|
||||
|
||||
# Instantiate LoadForecast and generate forecast data
|
||||
lf = LoadForecast(filepath=r"load_profiles.npz", year_energy=year_energy)
|
||||
file_path = os.path.join("data", "load_profiles.npz")
|
||||
lf = LoadForecast(filepath=file_path, year_energy=year_energy)
|
||||
forecast_list = []
|
||||
|
||||
# Generate daily forecasts for the date range based on measured data
|
||||
@ -153,68 +154,6 @@ def flask_gesamtlast():
|
||||
return jsonify(last.tolist())
|
||||
|
||||
|
||||
# @app.route('/gesamtlast', methods=['GET'])
|
||||
# def flask_gesamtlast():
|
||||
# if request.method == 'GET':
|
||||
# year_energy = float(request.args.get("year_energy")) # Get annual energy value from query parameters
|
||||
# prediction_hours = int(request.args.get("hours", 48)) # Default to 48 hours if not specified
|
||||
# date_now = datetime.now() # Get the current date and time
|
||||
# end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S') # Calculate end date based on prediction hours
|
||||
|
||||
# ###############
|
||||
# # Load Forecast
|
||||
# ###############
|
||||
# # Instantiate LastEstimator to retrieve measured data
|
||||
# estimator = LastEstimator()
|
||||
# start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d') # Start date: last 60 days
|
||||
# end_date = date_now.strftime('%Y-%m-%d') # Current date
|
||||
|
||||
# last_df = estimator.get_last(start_date, end_date) # Get last load data
|
||||
|
||||
# selected_columns = last_df[['timestamp', 'Last']] # Select relevant columns
|
||||
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') # Floor timestamps to the nearest hour
|
||||
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') # Convert 'Last' to numeric, coerce errors
|
||||
# cleaned_data = selected_columns.dropna() # Clean data by dropping NaN values
|
||||
|
||||
# # Instantiate LoadForecast
|
||||
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||
|
||||
# # Generate forecast data
|
||||
# forecast_list = [] # List to hold daily forecasts
|
||||
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): # Iterate over date range
|
||||
# date_str = single_date.strftime('%Y-%m-%d') # Format date
|
||||
# daily_forecast = lf.get_daily_stats(date_str) # Get daily stats from LoadForecast
|
||||
# mean_values = daily_forecast[0] # Extract mean values
|
||||
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] # Generate hours for the day
|
||||
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) # Create DataFrame for daily forecast
|
||||
# forecast_list.append(daily_forecast_df) # Append to the list
|
||||
|
||||
# forecast_df = pd.concat(forecast_list, ignore_index=True) # Concatenate all daily forecasts
|
||||
|
||||
# # Create LoadPredictionAdjuster instance
|
||||
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
|
||||
# adjuster.calculate_weighted_mean() # Calculate weighted mean for adjustments
|
||||
# adjuster.adjust_predictions() # Adjust predictions based on measured data
|
||||
|
||||
# # Predict the next hours
|
||||
# future_predictions = adjuster.predict_next_hours(prediction_hours) # Predict future load
|
||||
|
||||
# leistung_haushalt = future_predictions['Adjusted Pred'].values # Extract household power predictions
|
||||
|
||||
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours) # Create Gesamtlast instance
|
||||
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) # Add household load to total load calculation
|
||||
|
||||
# # ###############
|
||||
# # # WP (Heat Pump)
|
||||
# # ##############
|
||||
# # leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
|
||||
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
|
||||
|
||||
# last = gesamtlast.gesamtlast_berechnen() # Calculate total load
|
||||
# print(last) # Output total load
|
||||
# return jsonify(last.tolist()) # Return total load as JSON
|
||||
|
||||
|
||||
@app.route("/gesamtlast_simple", methods=["GET"])
|
||||
def flask_gesamtlast_simple():
|
||||
if request.method == "GET":
|
||||
@ -228,8 +167,10 @@ def flask_gesamtlast_simple():
|
||||
###############
|
||||
# Load Forecast
|
||||
###############
|
||||
file_path = os.path.join("data", "load_profiles.npz")
|
||||
|
||||
lf = LoadForecast(
|
||||
filepath=r"load_profiles.npz", year_energy=year_energy
|
||||
filepath=file_path, year_energy=year_energy
|
||||
) # Instantiate LoadForecast with specified parameters
|
||||
leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[
|
||||
0
|
||||
|
@ -101,7 +101,7 @@ class LoadForecast:
|
||||
|
||||
# Example usage of the class
|
||||
if __name__ == "__main__":
|
||||
filepath = r"..\load_profiles.npz" # Adjust the path to the .npz file
|
||||
filepath = r"..\data\load_profiles.npz" # Adjust the path to the .npz file
|
||||
lf = LoadForecast(filepath=filepath, year_energy=2000)
|
||||
specific_date_prices = lf.get_daily_stats("2024-02-16") # Adjust date as needed
|
||||
specific_hour_stats = lf.get_hourly_stats(
|
||||
|
@ -3,17 +3,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
|
||||
# from sklearn.model_selection import train_test_split, GridSearchCV
|
||||
# from sklearn.ensemble import GradientBoostingRegressor
|
||||
# from xgboost import XGBRegressor
|
||||
# from statsmodels.tsa.statespace.sarimax import SARIMAX
|
||||
# from tensorflow.keras.models import Sequential
|
||||
# from tensorflow.keras.layers import Dense, LSTM
|
||||
# from tensorflow.keras.optimizers import Adam
|
||||
# from sklearn.preprocessing import MinMaxScaler
|
||||
# from sqlalchemy import create_engine
|
||||
|
||||
|
||||
class LoadPredictionAdjuster:
|
||||
def __init__(self, measured_data, predicted_data, load_forecast):
|
||||
self.measured_data = measured_data
|
||||
|
@ -338,8 +338,6 @@ class optimization_problem:
|
||||
extra_data=extra_data,
|
||||
)
|
||||
|
||||
os.system("cp visualisierungsergebnisse.pdf ~/")
|
||||
|
||||
# Return final results as a dictionary
|
||||
return {
|
||||
"discharge_hours_bin": discharge_hours_bin,
|
||||
|
@ -110,7 +110,7 @@ def visualisiere_ergebnisse(
|
||||
|
||||
plt.figure(figsize=(14, 10))
|
||||
|
||||
if ist_dst_wechsel(datetime.now()):
|
||||
if ist_dst_wechsel(datetime.datetime.now()):
|
||||
hours = np.arange(start_hour, prediction_hours - 1)
|
||||
else:
|
||||
hours = np.arange(start_hour, prediction_hours)
|
||||
@ -262,31 +262,31 @@ def visualisiere_ergebnisse(
|
||||
if n < 0.01
|
||||
]
|
||||
)
|
||||
if filtered_losses.size != 0:
|
||||
best_loss = min(filtered_losses)
|
||||
worst_loss = max(filtered_losses)
|
||||
best_balance = min(filtered_balance)
|
||||
worst_balance = max(filtered_balance)
|
||||
|
||||
best_loss = min(filtered_losses)
|
||||
worst_loss = max(filtered_losses)
|
||||
best_balance = min(filtered_balance)
|
||||
worst_balance = max(filtered_balance)
|
||||
data = [filtered_losses, filtered_balance]
|
||||
labels = ["Losses", "Balance"]
|
||||
# Create plots
|
||||
fig, axs = plt.subplots(
|
||||
1, 2, figsize=(10, 6), sharey=False
|
||||
) # Two subplots, separate y-axes
|
||||
|
||||
data = [filtered_losses, filtered_balance]
|
||||
labels = ["Losses", "Balance"]
|
||||
# Create plots
|
||||
fig, axs = plt.subplots(
|
||||
1, 2, figsize=(10, 6), sharey=False
|
||||
) # Two subplots, separate y-axes
|
||||
# First violin plot for losses
|
||||
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
|
||||
axs[0].set_title("Losses")
|
||||
axs[0].set_xticklabels(["Losses"])
|
||||
|
||||
# First violin plot for losses
|
||||
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
|
||||
axs[0].set_title("Losses")
|
||||
axs[0].set_xticklabels(["Losses"])
|
||||
# Second violin plot for balance
|
||||
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
|
||||
axs[1].set_title("Balance")
|
||||
axs[1].set_xticklabels(["Balance"])
|
||||
|
||||
# Second violin plot for balance
|
||||
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
|
||||
axs[1].set_title("Balance")
|
||||
axs[1].set_xticklabels(["Balance"])
|
||||
|
||||
# Fine-tuning
|
||||
plt.tight_layout()
|
||||
# Fine-tuning
|
||||
plt.tight_layout()
|
||||
|
||||
pdf.savefig() # Save the current figure state to the PDF
|
||||
plt.close() # Close the figure
|
||||
|
Loading…
x
Reference in New Issue
Block a user