mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-08-25 15:01:14 +00:00
Moved load_profile db to data
removed comments fixed Bug in visualize.py (extra data empty) removed dead cp
This commit is contained in:
@@ -101,7 +101,7 @@ class LoadForecast:
|
||||
|
||||
# Example usage of the class
|
||||
if __name__ == "__main__":
|
||||
filepath = r"..\load_profiles.npz" # Adjust the path to the .npz file
|
||||
filepath = r"..\data\load_profiles.npz" # Adjust the path to the .npz file
|
||||
lf = LoadForecast(filepath=filepath, year_energy=2000)
|
||||
specific_date_prices = lf.get_daily_stats("2024-02-16") # Adjust date as needed
|
||||
specific_hour_stats = lf.get_hourly_stats(
|
||||
|
@@ -3,17 +3,6 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
|
||||
# from sklearn.model_selection import train_test_split, GridSearchCV
|
||||
# from sklearn.ensemble import GradientBoostingRegressor
|
||||
# from xgboost import XGBRegressor
|
||||
# from statsmodels.tsa.statespace.sarimax import SARIMAX
|
||||
# from tensorflow.keras.models import Sequential
|
||||
# from tensorflow.keras.layers import Dense, LSTM
|
||||
# from tensorflow.keras.optimizers import Adam
|
||||
# from sklearn.preprocessing import MinMaxScaler
|
||||
# from sqlalchemy import create_engine
|
||||
|
||||
|
||||
class LoadPredictionAdjuster:
|
||||
def __init__(self, measured_data, predicted_data, load_forecast):
|
||||
self.measured_data = measured_data
|
||||
|
@@ -338,8 +338,6 @@ class optimization_problem:
|
||||
extra_data=extra_data,
|
||||
)
|
||||
|
||||
os.system("cp visualisierungsergebnisse.pdf ~/")
|
||||
|
||||
# Return final results as a dictionary
|
||||
return {
|
||||
"discharge_hours_bin": discharge_hours_bin,
|
||||
|
@@ -110,7 +110,7 @@ def visualisiere_ergebnisse(
|
||||
|
||||
plt.figure(figsize=(14, 10))
|
||||
|
||||
if ist_dst_wechsel(datetime.now()):
|
||||
if ist_dst_wechsel(datetime.datetime.now()):
|
||||
hours = np.arange(start_hour, prediction_hours - 1)
|
||||
else:
|
||||
hours = np.arange(start_hour, prediction_hours)
|
||||
@@ -262,31 +262,31 @@ def visualisiere_ergebnisse(
|
||||
if n < 0.01
|
||||
]
|
||||
)
|
||||
if filtered_losses.size != 0:
|
||||
best_loss = min(filtered_losses)
|
||||
worst_loss = max(filtered_losses)
|
||||
best_balance = min(filtered_balance)
|
||||
worst_balance = max(filtered_balance)
|
||||
|
||||
best_loss = min(filtered_losses)
|
||||
worst_loss = max(filtered_losses)
|
||||
best_balance = min(filtered_balance)
|
||||
worst_balance = max(filtered_balance)
|
||||
data = [filtered_losses, filtered_balance]
|
||||
labels = ["Losses", "Balance"]
|
||||
# Create plots
|
||||
fig, axs = plt.subplots(
|
||||
1, 2, figsize=(10, 6), sharey=False
|
||||
) # Two subplots, separate y-axes
|
||||
|
||||
data = [filtered_losses, filtered_balance]
|
||||
labels = ["Losses", "Balance"]
|
||||
# Create plots
|
||||
fig, axs = plt.subplots(
|
||||
1, 2, figsize=(10, 6), sharey=False
|
||||
) # Two subplots, separate y-axes
|
||||
# First violin plot for losses
|
||||
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
|
||||
axs[0].set_title("Losses")
|
||||
axs[0].set_xticklabels(["Losses"])
|
||||
|
||||
# First violin plot for losses
|
||||
axs[0].violinplot(data[0], showmeans=True, showmedians=True)
|
||||
axs[0].set_title("Losses")
|
||||
axs[0].set_xticklabels(["Losses"])
|
||||
# Second violin plot for balance
|
||||
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
|
||||
axs[1].set_title("Balance")
|
||||
axs[1].set_xticklabels(["Balance"])
|
||||
|
||||
# Second violin plot for balance
|
||||
axs[1].violinplot(data[1], showmeans=True, showmedians=True)
|
||||
axs[1].set_title("Balance")
|
||||
axs[1].set_xticklabels(["Balance"])
|
||||
|
||||
# Fine-tuning
|
||||
plt.tight_layout()
|
||||
# Fine-tuning
|
||||
plt.tight_layout()
|
||||
|
||||
pdf.savefig() # Save the current figure state to the PDF
|
||||
plt.close() # Close the figure
|
||||
|
Reference in New Issue
Block a user