36 Commits

Author SHA1 Message Date
Normann
447f7d05be Update dependabot.yml to also include the feature branch 2025-03-23 22:48:02 +01:00
dependabot[bot]
c72051a08e Bump sphinx from 8.1.3 to 8.2.3 (#476)
Bumps [sphinx](https://github.com/sphinx-doc/sphinx) from 8.1.3 to 8.2.3.
- [Release notes](https://github.com/sphinx-doc/sphinx/releases)
- [Changelog](https://github.com/sphinx-doc/sphinx/blob/master/CHANGES.rst)
- [Commits](https://github.com/sphinx-doc/sphinx/compare/v8.1.3...v8.2.3)

---
updated-dependencies:
- dependency-name: sphinx
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 22:14:51 +01:00
Normann
60bd320fbc Python req. to 3.11 for sphinx update (#487)
* Python req. to 3.11 for sphinx update

* Update pyproject.toml
2025-03-23 22:09:02 +01:00
dependabot[bot]
600e332aae Bump platformdirs from 4.3.6 to 4.3.7 (#485)
Bumps [platformdirs](https://github.com/tox-dev/platformdirs) from 4.3.6 to 4.3.7.
- [Release notes](https://github.com/tox-dev/platformdirs/releases)
- [Changelog](https://github.com/tox-dev/platformdirs/blob/main/CHANGES.rst)
- [Commits](https://github.com/tox-dev/platformdirs/compare/4.3.6...4.3.7)

---
updated-dependencies:
- dependency-name: platformdirs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 21:14:34 +01:00
dependabot[bot]
6a51de04da Bump pvlib from 0.11.2 to 0.12.0 (#486)
Bumps [pvlib](https://github.com/pvlib/pvlib-python) from 0.11.2 to 0.12.0.
- [Release notes](https://github.com/pvlib/pvlib-python/releases)
- [Commits](https://github.com/pvlib/pvlib-python/compare/v0.11.2...v0.12.0)

---
updated-dependencies:
- dependency-name: pvlib
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 21:08:51 +01:00
dependabot[bot]
64c8415714 Bump pandas-stubs from 2.2.3.241126 to 2.2.3.250308 (#479)
Bumps [pandas-stubs](https://github.com/pandas-dev/pandas-stubs) from 2.2.3.241126 to 2.2.3.250308.
- [Changelog](https://github.com/pandas-dev/pandas-stubs/blob/main/docs/release_procedure.md)
- [Commits](https://github.com/pandas-dev/pandas-stubs/compare/v2.2.3.241126...v2.2.3.250308)

---
updated-dependencies:
- dependency-name: pandas-stubs
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 21:01:48 +01:00
dependabot[bot]
52f8b015b1 Bump numpy from 2.2.3 to 2.2.4 (#483)
Bumps [numpy](https://github.com/numpy/numpy) from 2.2.3 to 2.2.4.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v2.2.3...v2.2.4)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 21:01:33 +01:00
thiloms
a4adb07ebf CONTRIBUTING.md fix documentation link (404 error) (#484)
Fix take over the same link as in README.md. The current link will end up in HTTP error 404 (not found).
2025-03-23 13:52:15 +01:00
dependabot[bot]
b69bbe897f Bump numpydantic from 1.6.7 to 1.6.8 (#480)
Bumps [numpydantic](https://github.com/p2p-ld/numpydantic) from 1.6.7 to 1.6.8.
- [Release notes](https://github.com/p2p-ld/numpydantic/releases)
- [Changelog](https://github.com/p2p-ld/numpydantic/blob/main/docs/changelog.md)
- [Commits](https://github.com/p2p-ld/numpydantic/compare/v1.6.7...v1.6.8)

---
updated-dependencies:
- dependency-name: numpydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 13:51:06 +01:00
dependabot[bot]
0a7420c42b Bump types-requests from 2.32.0.20250301 to 2.32.0.20250306 (#478)
Bumps [types-requests](https://github.com/python/typeshed) from 2.32.0.20250301 to 2.32.0.20250306.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-23 13:49:47 +01:00
Eric
b22b5ee651 Conceptual documentation (#463)
Added new instruction.md, changed index.md accordingly and deleted the no longer needed about.md of new documentation structure.
Refinement of differences to other solutions and features of EOS.

Co-authored-by: Eric Hirsch <git@familie-hirsch.net>
2025-03-23 13:27:40 +01:00
dependabot[bot]
9b4ec74823 Bump pytest from 8.3.4 to 8.3.5 (#475)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Bumps [pytest](https://github.com/pytest-dev/pytest) from 8.3.4 to 8.3.5.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/8.3.4...8.3.5)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-05 10:32:48 +01:00
dependabot[bot]
1f30d4e403 Bump python-fasthtml from 0.12.1 to 0.12.4 (#470)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Bumps [python-fasthtml](https://github.com/AnswerDotAI/fasthtml) from 0.12.1 to 0.12.4.
- [Release notes](https://github.com/AnswerDotAI/fasthtml/releases)
- [Changelog](https://github.com/AnswerDotAI/fasthtml/blob/main/CHANGELOG.md)
- [Commits](https://github.com/AnswerDotAI/fasthtml/compare/0.12.1...0.12.4)

---
updated-dependencies:
- dependency-name: python-fasthtml
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-02 11:10:23 +01:00
dependabot[bot]
b563bbbd98 Bump matplotlib from 3.10.0 to 3.10.1 (#471)
Bumps [matplotlib](https://github.com/matplotlib/matplotlib) from 3.10.0 to 3.10.1.
- [Release notes](https://github.com/matplotlib/matplotlib/releases)
- [Commits](https://github.com/matplotlib/matplotlib/compare/v3.10.0...v3.10.1)

---
updated-dependencies:
- dependency-name: matplotlib
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-02 11:04:30 +01:00
dependabot[bot]
8422a5c9d8 Bump types-requests from 2.32.0.20241016 to 2.32.0.20250301 (#473)
Bumps [types-requests](https://github.com/python/typeshed) from 2.32.0.20241016 to 2.32.0.20250301.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-02 10:58:46 +01:00
dependabot[bot]
bec5c2cbda Bump fastapi[standard] from 0.115.8 to 0.115.11 (#472)
Bumps [fastapi[standard]](https://github.com/fastapi/fastapi) from 0.115.8 to 0.115.11.
- [Release notes](https://github.com/fastapi/fastapi/releases)
- [Commits](https://github.com/fastapi/fastapi/compare/0.115.8...0.115.11)

---
updated-dependencies:
- dependency-name: fastapi[standard]
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-02 10:57:57 +01:00
Dominique Lasserre
d2136f1447 Dockerfile: Set default for EOS_SERVER__EOSDASH_SESSKEY Closes #447 (#467)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
* This allows to start the container without any extra settings
   (potentially unsafe).
   It is recommended to set EOS_SERVER__EOSDASH_SESSKEY.
2025-02-23 16:17:54 +01:00
Dominique Lasserre
20621aa626 docker-compose: Expose EOSdash port Closes #447
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
* Fixes direct EOSdash access on Windows localhost:8504 (required for
   redirect).
2025-02-18 07:08:14 +01:00
Dominique Lasserre
76b5ec3638 visualize.py: Support variable remuneration Closes #451 (#459)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
2025-02-16 11:06:31 +01:00
dependabot[bot]
d912561bfb Bump numpy from 2.2.2 to 2.2.3 (#456)
Some checks are pending
docker-build / platform-excludes (push) Waiting to run
docker-build / build (push) Blocked by required conditions
docker-build / merge (push) Blocked by required conditions
pre-commit / pre-commit (push) Waiting to run
Run Pytest on Pull Request / test (push) Waiting to run
Bumps [numpy](https://github.com/numpy/numpy) from 2.2.2 to 2.2.3.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v2.2.2...v2.2.3)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-15 13:32:48 +01:00
dependabot[bot]
5907c94a2e Bump myst-parser from 4.0.0 to 4.0.1 (#455)
Bumps [myst-parser](https://github.com/executablebooks/MyST-Parser) from 4.0.0 to 4.0.1.
- [Release notes](https://github.com/executablebooks/MyST-Parser/releases)
- [Changelog](https://github.com/executablebooks/MyST-Parser/blob/master/CHANGELOG.md)
- [Commits](https://github.com/executablebooks/MyST-Parser/compare/v4.0.0...v4.0.1)

---
updated-dependencies:
- dependency-name: myst-parser
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-15 13:29:34 +01:00
Bobby Noelte
7b9b58f1e0 Add Markdown linter
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Add Markdown linter (pymarkdown) to pre-commit.
Adapt current markdown files to fulfill linter rules.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-13 12:10:47 +01:00
Dennis
c87bf2e4fc EOF issue in "optimize" documentation 2025-02-13 12:10:47 +01:00
Dennis
7773c4c2c9 Initial "optimize" documentation 2025-02-13 12:10:47 +01:00
Dominique Lasserre
b380624c9f Windows: Fix EOSdash startup Closes #436 #447 (#450)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
* On Windows use 127.0.0.1 as default config host (model defaults) and
   addionally redirect 0.0.0.0 to localhost on Windows (because default
   config file still has 0.0.0.0).
   Use 0.0.0.0 as default otherwise (e.g. Linux/Docker) to allow EOS
   being accessible on local network (not just same host).
   Note: Docs generation on Windows is incompatible with the Github
   pipeline tests. Address this in the nested-config feature branch.
 * Update install/startup instructions as package installation is
   required atm and Docker on Windows has to be accessed at localhost or
   127.0.0.1 even though the server log says 0.0.0.0 (which is required
   to be available outside the container).
 * Fix EOSdash startup with read_only: true (support session key via
   EOS_SERVER__EOSDASH_SESSKEY variable). Backport of feature branch.
 * Remove root_path, causing Windows to fail load swagger UI (/docs).
2025-02-10 00:38:35 +01:00
dependabot[bot]
caed880672 Bump mypy from 1.13.0 to 1.15.0 (#449)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Bumps [mypy](https://github.com/python/mypy) from 1.13.0 to 1.15.0.
- [Changelog](https://github.com/python/mypy/blob/master/CHANGELOG.md)
- [Commits](https://github.com/python/mypy/compare/v1.13.0...v1.15.0)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-08 01:08:17 +01:00
celle1234
6cc9a5fd44 visualize: fix timestamps on diagrams (#430) Closes #387
* visualize: fix timestamps on diagrams
* set start time in all graphs to the same beginning hour

---------

Co-authored-by: Normann <github@koldrack.com>
2025-02-08 00:47:21 +01:00
dependabot[bot]
80a4079bbf Bump fastapi[standard] from 0.115.7 to 0.115.8 (#442)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
Bumps [fastapi[standard]](https://github.com/fastapi/fastapi) from 0.115.7 to 0.115.8.
- [Release notes](https://github.com/fastapi/fastapi/releases)
- [Commits](https://github.com/fastapi/fastapi/compare/0.115.7...0.115.8)

---
updated-dependencies:
- dependency-name: fastapi[standard]
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-04 08:30:54 +01:00
dependabot[bot]
cc687b140f Bump python-fasthtml from 0.12.0 to 0.12.1 (#441)
Bumps [python-fasthtml](https://github.com/AnswerDotAI/fasthtml) from 0.12.0 to 0.12.1.
- [Release notes](https://github.com/AnswerDotAI/fasthtml/releases)
- [Changelog](https://github.com/AnswerDotAI/fasthtml/blob/main/CHANGELOG.md)
- [Commits](https://github.com/AnswerDotAI/fasthtml/compare/0.12.0...0.12.1)

---
updated-dependencies:
- dependency-name: python-fasthtml
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-02-04 08:25:09 +01:00
Dominique Lasserre
29cf3a3174 README.md: Add some system requirements (#438)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
2025-02-01 20:46:00 +01:00
Theo Weiss
837595de56 remove excess double quotes in Makefile (#437) 2025-02-01 16:41:24 +01:00
Normann
1a2da7636b Data prefetch for ems (#418)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
* Pre-fetch data

* maintanance and extend tests

* comment clean up

* nansum usage (to be save)
2025-01-26 18:29:26 +01:00
dependabot[bot]
774cfd8b65 Bump fastapi[standard] from 0.115.6 to 0.115.7 (#411)
Some checks are pending
docker-build / platform-excludes (push) Waiting to run
docker-build / build (push) Blocked by required conditions
docker-build / merge (push) Blocked by required conditions
pre-commit / pre-commit (push) Waiting to run
Run Pytest on Pull Request / test (push) Waiting to run
Bumps [fastapi[standard]](https://github.com/fastapi/fastapi) from 0.115.6 to 0.115.7.
- [Release notes](https://github.com/fastapi/fastapi/releases)
- [Commits](https://github.com/fastapi/fastapi/compare/0.115.6...0.115.7)

---
updated-dependencies:
- dependency-name: fastapi[standard]
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-25 19:35:42 +01:00
dependabot[bot]
9170b5f5cd Bump pydantic from 2.10.5 to 2.10.6 (#412)
Bumps [pydantic](https://github.com/pydantic/pydantic) from 2.10.5 to 2.10.6.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/main/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v2.10.5...v2.10.6)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-25 19:32:34 +01:00
dependabot[bot]
e42dd5d4b2 Bump timezonefinder from 6.5.7 to 6.5.8 (#414)
Bumps [timezonefinder](https://github.com/jannikmi/timezonefinder) from 6.5.7 to 6.5.8.
- [Release notes](https://github.com/jannikmi/timezonefinder/releases)
- [Changelog](https://github.com/jannikmi/timezonefinder/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jannikmi/timezonefinder/compare/6.5.7...6.5.8)

---
updated-dependencies:
- dependency-name: timezonefinder
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-25 19:29:00 +01:00
dependabot[bot]
58f077b4ae Bump numpydantic from 1.6.4 to 1.6.7 (#413)
Bumps [numpydantic](https://github.com/p2p-ld/numpydantic) from 1.6.4 to 1.6.7.
- [Release notes](https://github.com/p2p-ld/numpydantic/releases)
- [Changelog](https://github.com/p2p-ld/numpydantic/blob/main/docs/changelog.md)
- [Commits](https://github.com/p2p-ld/numpydantic/compare/v1.6.4...v1.6.7)

---
updated-dependencies:
- dependency-name: numpydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-25 19:24:44 +01:00
115 changed files with 13103 additions and 7977 deletions

View File

@@ -1,8 +1,8 @@
.git/
.github/
**/__pycache__/
**/*.pyc
**/*.egg-info/
eos-data/
mariadb-data/
test_data/
.dockerignore
.env
.gitignore
@@ -12,4 +12,4 @@ LICENSE
Makefile
NOTICE
README.md
.venv/
.venv

6
.env
View File

@@ -1,7 +1,5 @@
EOS_VERSION=main
EOS_SERVER__PORT=8503
EOS_SERVER__EOSDASH_PORT=8504
EOS_PORT=8503
EOSDASH_PORT=8504
PYTHON_VERSION=3.12.6
BASE_IMAGE=python
IMAGE_SUFFIX=-slim

View File

@@ -5,7 +5,16 @@
version: 2
updates:
# Update dependencies on the main branch
- package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"
target-branch: "main" # Target the main branch
# Update dependencies on the feature/config-nested branch
- package-ecosystem: "pip"
directory: "/"
schedule:
interval: "weekly"
target-branch: "feature/config-nested" # Target the specific feature branch

View File

@@ -7,11 +7,13 @@ on:
push:
branches:
- 'main'
- 'feature/config-overhaul'
tags:
- 'v*'
pull_request:
branches:
- '**'
- 'main'
- 'feature/config-overhaul'
env:
DOCKERHUB_REPO: akkudoktor/eos
@@ -38,9 +40,7 @@ jobs:
run: |
if ${{ github.event_name == 'pull_request' }}; then
echo 'matrix=[
{"platform": {"name": "linux/amd64"}},
{"platform": {"name": "linux/arm64"}},
{"platform": {"name": "linux/386"}},
{"platform": "linux/arm64"}
]' | tr -d '[:space:]' >> $GITHUB_OUTPUT
else
echo 'matrix=[]' >> $GITHUB_OUTPUT
@@ -58,69 +58,13 @@ jobs:
fail-fast: false
matrix:
platform:
- name: linux/amd64
base: python
python: 3.12 # pendulum not yet on pypi for 3.13
rustup_install: ""
apt_packages: ""
apt_build_packages: ""
pip_extra_url: ""
- name: linux/arm64
base: python
python: 3.12 # pendulum not yet on pypi for 3.13
rustup_install: ""
apt_packages: ""
apt_build_packages: ""
pip_extra_url: ""
- name: linux/arm/v6
base: python
python: 3.11 # highest version on piwheels
rustup_install: true
# numpy: libopenblas0
# h5py: libhdf5-hl-310
#apt_packages: "libopenblas0 libhdf5-hl-310"
apt_packages: "" #TODO verify
# pendulum: git (apply patch)
# matplotlib (countourpy): g++
# fastapi (MarkupSafe): gcc
# rustup installer: curl
apt_build_packages: "curl git g++"
pip_extra_url: "https://www.piwheels.org/simple" # armv6/v7 packages
- name: linux/arm/v7
base: python
python: 3.11 # highest version on piwheels
rustup_install: true
# numpy: libopenblas0
# h5py: libhdf5-hl-310
#apt_packages: "libopenblas0 libhdf5-hl-310"
apt_packages: "" #TODO verify
# pendulum: git (apply patch)
# matplotlib (countourpy): g++
# fastapi (MarkupSafe): gcc
# rustup installer: curl
apt_build_packages: "curl git g++"
pip_extra_url: "https://www.piwheels.org/simple" # armv6/v7 packages
- name: linux/386
# Get 32bit distributor fix for pendulum, not yet officially released.
# Needs Debian testing instead of python:xyz which is based on Debian stable.
base: debian
python: trixie
rustup_install: ""
# numpy: libopenblas0
# h5py: libhdf5-hl-310
apt_packages: "python3-pendulum python3-pip libopenblas0 libhdf5-hl-310"
# numpy: g++, libc-dev
# skikit: pkgconf python3-dev, libopenblas-dev
# uvloop: make
# h5py: libhdf5-dev
# many others g++/gcc
apt_build_packages: "g++ pkgconf libc-dev python3-dev make libopenblas-dev libhdf5-dev"
pip_extra_url: ""
- linux/amd64
- linux/arm64
exclude: ${{ fromJSON(needs.platform-excludes.outputs.excludes) }}
steps:
- name: Prepare
run: |
platform=${{ matrix.platform.name }}
platform=${{ matrix.platform }}
echo "PLATFORM_PAIR=${platform//\//-}" >> $GITHUB_ENV
- name: Docker meta
@@ -154,8 +98,7 @@ jobs:
- name: Login to GHCR
uses: docker/login-action@v3
# skip for pull requests
#TODO: uncomment again
#if: ${{ github.event_name != 'pull_request' }}
if: ${{ github.event_name != 'pull_request' }}
with:
registry: ghcr.io
username: ${{ github.actor }}
@@ -163,7 +106,8 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
#if: ${{ github.event_name != 'pull_request' }}
# skip for pull requests
if: ${{ github.event_name != 'pull_request' }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -172,19 +116,10 @@ jobs:
id: build
uses: docker/build-push-action@v6
with:
platforms: ${{ matrix.platform.name }}
platforms: ${{ matrix.platform }}
labels: ${{ steps.meta.outputs.labels }}
annotations: ${{ steps.meta.outputs.annotations }}
#TODO: uncomment again
#outputs: type=image,"name=${{ env.DOCKERHUB_REPO }},${{ env.GHCR_REPO }}",push-by-digest=true,name-canonical=true,"push=${{ github.event_name != 'pull_request' }}","annotation-index.org.opencontainers.image.description=${{ env.EOS_REPO_DESCRIPTION }}"
outputs: type=image,"name=${{ env.DOCKERHUB_REPO }},${{ env.GHCR_REPO }}",push-by-digest=true,name-canonical=true,push=true,"annotation-index.org.opencontainers.image.description=${{ env.EOS_REPO_DESCRIPTION }}"
build-args: |
BASE_IMAGE=${{ matrix.platform.base }}
PYTHON_VERSION=${{ matrix.platform.python }}
PIP_EXTRA_INDEX_URL=${{ matrix.platform.pip_extra_url }}
APT_PACKAGES=${{ matrix.platform.apt_packages }}
APT_BUILD_PACKAGES=${{ matrix.platform.apt_build_packages }}
RUSTUP_INSTALL=${{ matrix.platform.rustup_install }}
outputs: type=image,"name=${{ env.DOCKERHUB_REPO }},${{ env.GHCR_REPO }}",push-by-digest=true,name-canonical=true,"push=${{ github.event_name != 'pull_request' }}","annotation-index.org.opencontainers.image.description=${{ env.EOS_REPO_DESCRIPTION }}"
- name: Generate artifact attestation DockerHub
uses: actions/attest-build-provenance@v2

3
.gitignore vendored
View File

@@ -260,6 +260,3 @@ tests/testdata/new_optimize_result*
tests/testdata/openapi-new.json
tests/testdata/openapi-new.md
tests/testdata/config-new.md
# FastHTML session key
.sesskey

View File

@@ -33,3 +33,12 @@ repos:
- "pandas-stubs==2.2.3.241009"
- "numpy==2.1.3"
pass_filenames: false
- repo: https://github.com/jackdewinter/pymarkdown
rev: main
hooks:
- id: pymarkdown
files: ^docs/
exclude: ^docs/_generated
args:
- --config=docs/pymarkdown.json
- scan

View File

@@ -6,7 +6,7 @@ The `EOS` project is in early development, therefore we encourage contribution i
## Documentation
Latest development documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedocs.io/en/main/).
Latest development documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedocs.io/en/latest/).
## Bug Reports
@@ -33,6 +33,7 @@ See also [README.md](README.md).
python -m venv .venv
source .venv/bin/activate
pip install -r requirements-dev.txt
pip install -e .
```
Install make to get access to helpful shortcuts (documentation generation, manual formatting, etc.).

View File

@@ -1,20 +1,22 @@
ARG PYTHON_VERSION=3.12.8
ARG BASE_IMAGE=python
ARG IMAGE_SUFFIX=-slim
FROM ${BASE_IMAGE}:${PYTHON_VERSION}${IMAGE_SUFFIX} AS base
ARG PYTHON_VERSION=3.12.7
FROM python:${PYTHON_VERSION}-slim
LABEL source="https://github.com/Akkudoktor-EOS/EOS"
ENV VIRTUAL_ENV="/opt/venv"
ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
ENV MPLCONFIGDIR="/tmp/mplconfigdir"
ENV EOS_DIR="/opt/eos"
ENV EOS_CACHE_DIR="${EOS_DIR}/cache"
ENV EOS_OUTPUT_DIR="${EOS_DIR}/output"
ENV EOS_CONFIG_DIR="${EOS_DIR}/config"
# Overwrite when starting the container in a production environment
ENV EOS_SERVER__EOSDASH_SESSKEY=s3cr3t
WORKDIR ${EOS_DIR}
# Use useradd over adduser to support both debian:x-slim and python:x-slim base images
RUN useradd --system --no-create-home --shell /usr/sbin/nologin eos \
RUN adduser --system --group --no-create-home eos \
&& mkdir -p "${MPLCONFIGDIR}" \
&& chown eos "${MPLCONFIGDIR}" \
&& mkdir -p "${EOS_CACHE_DIR}" \
@@ -24,85 +26,13 @@ RUN useradd --system --no-create-home --shell /usr/sbin/nologin eos \
&& mkdir -p "${EOS_CONFIG_DIR}" \
&& chown eos "${EOS_CONFIG_DIR}"
ARG APT_PACKAGES
ENV APT_PACKAGES="${APT_PACKAGES}"
RUN --mount=type=cache,sharing=locked,target=/var/lib/apt/lists \
--mount=type=cache,sharing=locked,target=/var/cache/apt \
rm /etc/apt/apt.conf.d/docker-clean; \
if [ -n "${APT_PACKAGES}" ]; then \
apt-get update \
&& apt-get install -y --no-install-recommends ${APT_PACKAGES}; \
fi
FROM base AS build
ARG APT_BUILD_PACKAGES
ENV APT_BUILD_PACKAGES="${APT_BUILD_PACKAGES}"
RUN --mount=type=cache,sharing=locked,target=/var/lib/apt/lists \
--mount=type=cache,sharing=locked,target=/var/cache/apt \
rm /etc/apt/apt.conf.d/docker-clean; \
if [ -n "${APT_BUILD_PACKAGES}" ]; then \
apt-get update \
&& apt-get install -y --no-install-recommends ${APT_BUILD_PACKAGES}; \
fi
ARG RUSTUP_INSTALL
ENV RUSTUP_INSTALL="${RUSTUP_INSTALL}"
ENV RUSTUP_HOME=/opt/rust
ENV CARGO_HOME=/opt/rust
ENV PATH="$RUSTUP_HOME/bin:$PATH"
ARG PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL="${PIP_EXTRA_INDEX_URL}"
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=tmpfs,target=/root/.cargo \
dpkgArch=$(dpkg --print-architecture) \
&& if [ -n "${RUSTUP_INSTALL}" ]; then \
case "$dpkgArch" in \
# armv6
armel) \
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile minimal --target arm-unknown-linux-gnueabi --no-modify-path \
;; \
*) \
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile minimal --no-modify-path \
;; \
esac \
&& rustc --version \
&& cargo --version; \
fi \
# Install 32bit fix for pendulum, can be removed after next pendulum release (> 3.0.0)
&& case "$dpkgArch" in \
# armv7/armv6
armhf|armel) \
git clone https://github.com/python-pendulum/pendulum.git \
&& git -C pendulum checkout -b 3.0.0 3.0.0 \
# Apply 32bit patch
&& git -C pendulum -c user.name=ci -c user.email=ci@github.com cherry-pick b84b97625cdea00f8ab150b8b35aa5ccaaf36948 \
&& cd pendulum \
# Use pip3 over pip to support both debian:x and python:x base images
&& pip3 install maturin \
&& maturin build --release --out dist \
&& pip3 install dist/*.whl --break-system-packages \
&& cd - \
;; \
esac
COPY requirements.txt .
# Use tmpfs for cargo due to qemu (multiarch) limitations
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=tmpfs,target=/root/.cargo \
# Use pip3 over pip to support both debian:x and python:x base images
pip3 install -r requirements.txt --break-system-packages
FROM base AS final
# Copy all python dependencies previously installed or built to the final stage.
COPY --from=build /usr/local/ /usr/local/
COPY --from=build /opt/eos/requirements.txt .
pip install -r requirements.txt
COPY pyproject.toml .
RUN --mount=type=cache,target=/root/.cache/pip \
# Use pip3 over pip to support both debian:x and python:x base images
mkdir -p src && pip3 install -e . --break-system-packages
RUN mkdir -p src && pip install -e .
COPY src src
@@ -112,7 +42,7 @@ ENTRYPOINT []
EXPOSE 8503
EXPOSE 8504
# Use python3 over python to support both debian:x and python:x base images
CMD ["python3", "src/akkudoktoreos/server/eos.py", "--host", "0.0.0.0"]
ENV server_eosdash_host=0.0.0.0
CMD ["python", "src/akkudoktoreos/server/eos.py", "--host", "0.0.0.0"]
VOLUME ["${MPLCONFIGDIR}", "${EOS_CACHE_DIR}", "${EOS_OUTPUT_DIR}", "${EOS_CONFIG_DIR}"]

View File

@@ -17,8 +17,8 @@ help:
@echo " docker-build - Rebuild docker image"
@echo " docs - Generate HTML documentation (in build/docs/html/)."
@echo " read-docs - Read HTML documentation in your browser."
@echo " gen-docs - Generate openapi.json and docs/_generated/*.""
@echo " clean-docs - Remove generated documentation.""
@echo " gen-docs - Generate openapi.json and docs/_generated/*."
@echo " clean-docs - Remove generated documentation."
@echo " run - Run EOS production server in the virtual environment."
@echo " run-dev - Run EOS development server in the virtual environment (automatically reloads)."
@echo " dist - Create distribution (in dist/)."

View File

@@ -8,9 +8,19 @@ Documentation can be found at [Akkudoktor-EOS](https://akkudoktor-eos.readthedoc
See [CONTRIBUTING.md](CONTRIBUTING.md).
## System requirements
- Python >= 3.11, < 3.13
- Architecture: amd64, aarch64 (armv8)
- OS: Linux, Windows, macOS
Note: For Python 3.13 some dependencies (e.g. [Pendulum](https://github.com/python-pendulum/Pendulum)) are not yet available on https://pypi.org and have to be manually compiled (a recent [Rust](https://www.rust-lang.org/tools/install) installation is required).
Other architectures (e.g. armv6, armv7) are unsupported for now, because a multitude of dependencies are not available on https://piwheels.org and have to be built manually (a recent Rust installation and [GCC](https://gcc.gnu.org/) are required, Python 3.11 is recommended).
## Installation
The project requires Python 3.10 or newer. Official docker images can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos).
Docker images (amd64/aarch64) can be found at [akkudoktor/eos](https://hub.docker.com/r/akkudoktor/eos).
Following sections describe how to locally start the EOS server on `http://localhost:8503`.
@@ -23,6 +33,7 @@ Linux:
```bash
python -m venv .venv
.venv/bin/pip install -r requirements.txt
.venv/bin/pip install -e .
```
Windows:
@@ -30,9 +41,10 @@ Windows:
```cmd
python -m venv .venv
.venv\Scripts\pip install -r requirements.txt
.venv\Scripts\pip install -e .
```
Finally, start the EOS server:
Finally, start the EOS server to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`):
Linux:
@@ -48,12 +60,12 @@ Windows:
### Docker
Start EOS with following command to access it at `http://localhost:8503` (API docs at `http://localhost:8503/docs`):
```bash
docker compose up
```
If you are running the EOS container on a system hosting multiple services, such as a Synology NAS, and want to allow external network access to EOS, please ensure that the default exported ports (8503, 8504) are available on the host. On Synology systems, these ports might already be in use (refer to [this guide](https://kb.synology.com/en-me/DSM/tutorial/What_network_ports_are_used_by_Synology_services)). If the ports are occupied, you will need to reconfigure the exported ports accordingly.
## Configuration
This project uses the `EOS.config.json` file to manage configuration settings.

View File

@@ -11,21 +11,14 @@ services:
dockerfile: "Dockerfile"
args:
PYTHON_VERSION: "${PYTHON_VERSION}"
BASE_IMAGE: "${BASE_IMAGE}"
IMAGE_SUFFIX: "${IMAGE_SUFFIX}"
APT_PACKAGES: "${APT_PACKAGES:-}"
APT_BUILD_PACKAGES: "${APT_BUILD_PACKAGES:-}"
PIP_EXTRA_INDEX_URL: "${PIP_EXTRA_INDEX_URL:-}"
RUSTUP_INSTALL: "${RUSTUP_INSTALL:-}"
env_file:
- .env
environment:
- EOS_CONFIG_DIR=config
- latitude=52.2
- longitude=13.4
- elecprice_provider=ElecPriceAkkudoktor
- elecprice_charges_kwh=0.21
- EOS_SERVER__EOSDASH_SESSKEY=s3cr3t
- EOS_PREDICTION__LATITUDE=52.2
- EOS_PREDICTION__LONGITUDE=13.4
- EOS_ELECPRICE__PROVIDER=ElecPriceAkkudoktor
- EOS_ELECPRICE__CHARGES_KWH=0.21
ports:
- "${EOS_SERVER__PORT}:${EOS_SERVER__PORT}"
- "${EOS_SERVER__EOSDASH_PORT}:${EOS_SERVER__EOSDASH_PORT}"
# Configure what ports to expose on host
- "${EOS_PORT}:8503"
- "${EOSDASH_PORT}:8504"

File diff suppressed because it is too large Load Diff

View File

@@ -63,7 +63,7 @@ Args:
year_energy (float): Yearly energy consumption in Wh.
Note:
Set LoadAkkudoktor as provider, then update data with
Set LoadAkkudoktor as load_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=load_mean' instead.
@@ -91,8 +91,6 @@ Fastapi Optimize
- `start_hour` (query, optional): Defaults to current hour of the day.
- `ngen` (query, optional): No description provided.
**Request Body**:
- `application/json`: {
@@ -123,7 +121,7 @@ If no forecast values are available the missing ones at the start of the series
filled with the first available forecast value.
Note:
Set PVForecastAkkudoktor as provider, then update data with
Set PVForecastAkkudoktor as pvforecast_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=pvforecast_ac_power' and
@@ -153,7 +151,7 @@ Note:
Electricity price charges are added.
Note:
Set ElecPriceAkkudoktor as provider, then update data with
Set ElecPriceAkkudoktor as elecprice_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=elecprice_marketprice_wh' or
@@ -192,11 +190,11 @@ Returns:
Fastapi Config Put
```
Update the current config with the provided settings.
Write the provided settings into the current settings.
Note that for any setting value that is None or unset, the configuration will fall back to
values from other sources such as environment variables, the EOS configuration file, or default
values.
The existing settings are completely overwritten. Note that for any setting
value that is None, the configuration will fall back to values from other sources such as
environment variables, the EOS configuration file, or default values.
Args:
settings (SettingsEOS): The settings to write into the current settings.
@@ -205,11 +203,311 @@ Returns:
configuration (ConfigEOS): The current configuration after the write.
```
**Request Body**:
**Parameters**:
- `application/json`: {
"$ref": "#/components/schemas/SettingsEOS"
}
- `server_eos_host` (query, optional): EOS server IP address.
- `server_eos_port` (query, optional): EOS server IP port number.
- `server_eos_verbose` (query, optional): Enable debug output
- `server_eos_startup_eosdash` (query, optional): EOS server to start EOSdash server.
- `server_eosdash_host` (query, optional): EOSdash server IP address.
- `server_eosdash_port` (query, optional): EOSdash server IP port number.
- `weatherimport_file_path` (query, optional): Path to the file to import weather data from.
- `weatherimport_json` (query, optional): JSON string, dictionary of weather forecast value lists.
- `weather_provider` (query, optional): Weather provider id of provider to be used.
- `pvforecastimport_file_path` (query, optional): Path to the file to import PV forecast data from.
- `pvforecastimport_json` (query, optional): JSON string, dictionary of PV forecast value lists.
- `pvforecast_provider` (query, optional): PVForecast provider id of provider to be used.
- `pvforecast0_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast0_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast0_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast0_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast0_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast0_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast0_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast0_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast0_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast0_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast0_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast0_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast0_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast0_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast0_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast0_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast1_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast1_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast1_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast1_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast1_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast1_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast1_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast1_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast1_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast1_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast1_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast1_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast1_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast1_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast1_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast1_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast2_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast2_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast2_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast2_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast2_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast2_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast2_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast2_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast2_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast2_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast2_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast2_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast2_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast2_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast2_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast2_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast3_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast3_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast3_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast3_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast3_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast3_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast3_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast3_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast3_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast3_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast3_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast3_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast3_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast3_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast3_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast3_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast4_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast4_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast4_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast4_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast4_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast4_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast4_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast4_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast4_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast4_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast4_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast4_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast4_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast4_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast4_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast4_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `pvforecast5_surface_tilt` (query, optional): Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast5_surface_azimuth` (query, optional): Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast5_userhorizon` (query, optional): Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast5_peakpower` (query, optional): Nominal power of PV system in kW.
- `pvforecast5_pvtechchoice` (query, optional): PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast5_mountingplace` (query, optional): Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast5_loss` (query, optional): Sum of PV system losses in percent
- `pvforecast5_trackingtype` (query, optional): Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast5_optimal_surface_tilt` (query, optional): Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast5_optimalangles` (query, optional): Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast5_albedo` (query, optional): Proportion of the light hitting the ground that it reflects back.
- `pvforecast5_module_model` (query, optional): Model of the PV modules of this plane.
- `pvforecast5_inverter_model` (query, optional): Model of the inverter of this plane.
- `pvforecast5_inverter_paco` (query, optional): AC power rating of the inverter. [W]
- `pvforecast5_modules_per_string` (query, optional): Number of the PV modules of the strings of this plane.
- `pvforecast5_strings_per_inverter` (query, optional): Number of the strings of the inverter of this plane.
- `load_import_file_path` (query, optional): Path to the file to import load data from.
- `load_import_json` (query, optional): JSON string, dictionary of load forecast value lists.
- `loadakkudoktor_year_energy` (query, optional): Yearly energy consumption (kWh).
- `load_provider` (query, optional): Load provider id of provider to be used.
- `elecpriceimport_file_path` (query, optional): Path to the file to import elecprice data from.
- `elecpriceimport_json` (query, optional): JSON string, dictionary of electricity price forecast value lists.
- `elecprice_provider` (query, optional): Electricity price provider id of provider to be used.
- `elecprice_charges_kwh` (query, optional): Electricity price charges (€/kWh).
- `prediction_hours` (query, optional): Number of hours into the future for predictions
- `prediction_historic_hours` (query, optional): Number of hours into the past for historical predictions data
- `latitude` (query, optional): Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)
- `longitude` (query, optional): Longitude in decimal degrees, within -180 to 180 (°)
- `optimization_hours` (query, optional): Number of hours into the future for optimizations.
- `optimization_penalty` (query, optional): Penalty factor used in optimization.
- `optimization_ev_available_charge_rates_percent` (query, optional): Charge rates available for the EV in percent of maximum charge.
- `measurement_load0_name` (query, optional): Name of the load0 source (e.g. 'Household', 'Heat Pump')
- `measurement_load1_name` (query, optional): Name of the load1 source (e.g. 'Household', 'Heat Pump')
- `measurement_load2_name` (query, optional): Name of the load2 source (e.g. 'Household', 'Heat Pump')
- `measurement_load3_name` (query, optional): Name of the load3 source (e.g. 'Household', 'Heat Pump')
- `measurement_load4_name` (query, optional): Name of the load4 source (e.g. 'Household', 'Heat Pump')
- `battery_provider` (query, optional): Id of Battery simulation provider.
- `battery_capacity` (query, optional): Battery capacity [Wh].
- `battery_initial_soc` (query, optional): Battery initial state of charge [%].
- `battery_soc_min` (query, optional): Battery minimum state of charge [%].
- `battery_soc_max` (query, optional): Battery maximum state of charge [%].
- `battery_charging_efficiency` (query, optional): Battery charging efficiency [%].
- `battery_discharging_efficiency` (query, optional): Battery discharging efficiency [%].
- `battery_max_charging_power` (query, optional): Battery maximum charge power [W].
- `bev_provider` (query, optional): Id of Battery Electric Vehicle simulation provider.
- `bev_capacity` (query, optional): Battery Electric Vehicle capacity [Wh].
- `bev_initial_soc` (query, optional): Battery Electric Vehicle initial state of charge [%].
- `bev_soc_max` (query, optional): Battery Electric Vehicle maximum state of charge [%].
- `bev_charging_efficiency` (query, optional): Battery Electric Vehicle charging efficiency [%].
- `bev_discharging_efficiency` (query, optional): Battery Electric Vehicle discharging efficiency [%].
- `bev_max_charging_power` (query, optional): Battery Electric Vehicle maximum charge power [W].
- `dishwasher_provider` (query, optional): Id of Dish Washer simulation provider.
- `dishwasher_consumption` (query, optional): Dish Washer energy consumption [Wh].
- `dishwasher_duration` (query, optional): Dish Washer usage duration [h].
- `inverter_provider` (query, optional): Id of PV Inverter simulation provider.
- `inverter_power_max` (query, optional): Inverter maximum power [W].
- `logging_level_default` (query, optional): EOS default logging level.
- `data_folder_path` (query, optional): Path to EOS data directory.
- `data_output_subpath` (query, optional): Sub-path for the EOS output data directory.
- `data_cache_subpath` (query, optional): Sub-path for the EOS cache data directory.
**Responses**:
@@ -219,6 +517,25 @@ Returns:
---
## GET /v1/config/file
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_get_v1_config_file_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_get_v1_config_file_get)
Fastapi Config File Get
```
Get the settings as defined by the EOS configuration file.
Returns:
settings (SettingsEOS): The settings defined by the EOS configuration file.
```
**Responses**:
- **200**: Successful Response
---
## PUT /v1/config/file
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_file_put_v1_config_file_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_file_put_v1_config_file_put)
@@ -238,14 +555,14 @@ Returns:
---
## PUT /v1/config/reset
## POST /v1/config/update
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_update_post_v1_config_reset_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_update_post_v1_config_reset_put)
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_update_post_v1_config_update_post), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_update_post_v1_config_update_post)
Fastapi Config Update Post
```
Reset the configuration to the EOS configuration file.
Update the configuration from the EOS configuration file.
Returns:
configuration (ConfigEOS): The current configuration after update.
@@ -257,6 +574,37 @@ Returns:
---
## PUT /v1/config/value
**Links**: [local](http://localhost:8503/docs#/default/fastapi_config_value_put_v1_config_value_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_config_value_put_v1_config_value_put)
Fastapi Config Value Put
```
Set the configuration option in the settings.
Args:
key (str): configuration key
value (Any): configuration value
Returns:
configuration (ConfigEOS): The current configuration after the write.
```
**Parameters**:
- `key` (query, required): configuration key
- `value` (query, required): configuration value
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## PUT /v1/measurement/data
**Links**: [local](http://localhost:8503/docs#/default/fastapi_measurement_data_put_v1_measurement_data_put), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_measurement_data_put_v1_measurement_data_put)
@@ -526,31 +874,6 @@ Args:
---
## GET /v1/prediction/providers
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_providers_get_v1_prediction_providers_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_providers_get_v1_prediction_providers_get)
Fastapi Prediction Providers Get
```
Get a list of available prediction providers.
Args:
enabled (bool): Return enabled/disabled providers. If unset, return all providers.
```
**Parameters**:
- `enabled` (query, optional): No description provided.
**Responses**:
- **200**: Successful Response
- **422**: Validation Error
---
## GET /v1/prediction/series
**Links**: [local](http://localhost:8503/docs#/default/fastapi_prediction_series_get_v1_prediction_series_get), [eos](https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/openapi.json#/default/fastapi_prediction_series_get_v1_prediction_series_get)

View File

@@ -1,3 +0,0 @@
.wy-nav-content {
max-width: 90% !important;
}

BIN
docs/_static/introduction/integration.png vendored Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

BIN
docs/_static/introduction/introduction.png vendored Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
docs/_static/introduction/overview.png vendored Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

File diff suppressed because one or more lines are too long

BIN
docs/_static/optimization_timeframes.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 664 KiB

View File

@@ -1,9 +0,0 @@
% SPDX-License-Identifier: Apache-2.0
# About Akkudoktor EOS
The Energy System Simulation and Optimization System (EOS) provides a comprehensive solution for
simulating and optimizing an energy system based on renewable energy sources. With a focus on
photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements),
heat pumps, electric vehicles, and consideration of electricity price data, this system enables
forecasting and optimization of energy flow and costs over a specified period.

View File

@@ -20,17 +20,22 @@ EOS Architecture
### Configuration
The configuration controls all aspects of EOS: optimization, prediction, measurement, and energy management.
The configuration controls all aspects of EOS: optimization, prediction, measurement, and energy
management.
### Energy Management
Energy management is the overall process to provide planning data for scheduling the different devices in your system in an optimal way. Energy management cares for the update of predictions and the optimization of the planning based on the simulated behavior of the devices. The planning is on the hour. Sub-hour energy management is left
Energy management is the overall process to provide planning data for scheduling the different
devices in your system in an optimal way. Energy management cares for the update of predictions and
the optimization of the planning based on the simulated behavior of the devices. The planning is on
the hour. Sub-hour energy management is left
### Optimization
### Device Simulations
Device simulations simulate devices' behavior based on internal logic and predicted data. They provide the data needed for optimization.
Device simulations simulate devices' behavior based on internal logic and predicted data. They
provide the data needed for optimization.
### Predictions
@@ -38,7 +43,8 @@ Predictions provide predicted future data to be used by the optimization.
### Measurements
Measurements are utilized to refine predictions using real data from your system, thereby enhancing accuracy.
Measurements are utilized to refine predictions using real data from your system, thereby enhancing
accuracy.
### EOS Server

View File

@@ -7,9 +7,10 @@ management.
## Storing Configuration
EOS stores configuration data in a `nested structure`. Note that configuration changes inside EOS
are updated in memory, meaning all changes will be lost upon restarting the EOS REST server if not
saved to the `EOS configuration file`.
EOS stores configuration data in a **key-value store**, where a `configuration key` refers to the
unique identifier used to store and retrieve specific configuration data. Note that the key-value
store is memory-based, meaning all stored data will be lost upon restarting the EOS REST server if
not saved to the `EOS configuration file`.
Some `configuration keys` are read-only and cannot be altered. These keys are either set up by other
means, such as environment variables, or determined from other information.
@@ -24,37 +25,37 @@ Use endpoint `PUT /v1/config/file` to save the current configuration to the
### Load Configuration File
Use endpoint `POST /v1/config/reset` to reset the configuration to the values in the
`EOS configuration file`.
Use endpoint `POST /v1/config/update` to update the configuration from the `EOS configuration file`.
## Configuration Sources and Priorities
The configuration sources and their priorities are as follows:
1. **Runtime Config Updates**: Provided during runtime by the REST interface
2. **Environment Variables**: Defined at startup of the REST server and during runtime
3. **EOS Configuration File**: Read at startup of the REST server and on request
4. **Default Values**
1. `Settings`: Provided during runtime by the REST interface
2. `Environment Variables`: Defined at startup of the REST server and during runtime
3. `EOS Configuration File`: Read at startup of the REST server and on request
4. `Default Values`
### Runtime Config Updates
### Settings
The EOS configuration can be updated at runtime. Note that those updates are not persistent
automatically. However it is possible to save the configuration to the `EOS configuration file`.
Settings are sets of configuration data that take precedence over all other configuration data from
different sources. Note that settings are not persistent. To make the current configuration with the
current settings persistent, save the configuration to the `EOS configuration file`.
Use the following endpoints to change the current runtime configuration:
Use the following endpoints to change the current configuration settings:
- `PUT /v1/config`: Update the entire or parts of the configuration.
- `PUT /v1/config`: Replaces the entire configuration settings.
- `PUT /v1/config/value`: Sets a specific configuration option.
### Environment Variables
All `configuration keys` can be set by environment variables prefixed with `EOS_` and separated by
`__` for nested structures. Environment variables are case insensitive.
EOS recognizes the following special environment variables (case sensitive):
All `configuration keys` can be set by environment variables with the same name. EOS recognizes the
following special environment variables:
- `EOS_CONFIG_DIR`: The directory to search for an EOS configuration file.
- `EOS_DIR`: The directory used by EOS for data, which will also be searched for an EOS
configuration file.
- `EOS_LOGGING_LEVEL`: The logging level to use in EOS.
### EOS Configuration File
@@ -65,7 +66,7 @@ If you do not have a configuration file, it will be automatically created on the
the REST server in a system-dependent location.
To determine the location of the configuration file used by EOS, ask the REST server. The endpoint
`GET /v1/config` provides the `general.config_file_path` configuration key.
`GET /v1/config` provides the `config_file_path` configuration key.
EOS searches for the configuration file in the following order:
@@ -74,15 +75,9 @@ EOS searches for the configuration file in the following order:
3. A platform-specific default directory for EOS
4. The current working directory
The first configuration file available in these directories is loaded. If no configuration file is
found, a default configuration file is created, and the default settings are written to it. The
location of the created configuration file follows the same order in which EOS searches for
configuration files, and it depends on whether the relevant environment variables are set.
Use the following endpoints to interact with the configuration file:
- `PUT /v1/config/file`: Save the current configuration to the configuration file.
- `PUT /v1/config/reset`: Reload the configuration file, all unsaved runtime configuration is reset.
The first available configuration file found in these directories is loaded. If no configuration
file is found, a default configuration file is created in the platform-specific default directory,
and default settings are loaded into it.
### Default Values

View File

@@ -1,4 +1,5 @@
% SPDX-License-Identifier: Apache-2.0
(integration-page)=
# Integration
@@ -17,18 +18,19 @@ APIs, and online services in creative and practical ways.
Andreas Schmitz uses [Node-RED](https://nodered.org/) as part of his home automation setup.
### Resources
### Node-Red Resources
- [Installation Guide (German)](https://meintechblog.de/2024/09/05/andreas-schmitz-joerg-installiert-mein-energieoptimierungssystem/) — A detailed guide on integrating an early version of EOS with
`Node-RED`.
- [Installation Guide (German)](https://meintechblog.de/2024/09/05/andreas-schmitz-joerg-installiert-mein-energieoptimierungssystem/)
\— A detailed guide on integrating an early version of EOS with `Node-RED`.
## Home Assistant
[Home Assistant](https://www.home-assistant.io/) is an open-source home automation platform that
emphasizes local control and user privacy.
### Resources
(duetting-solution)=
### Home Assistant Resources
- Duetting's [EOS Home Assistant Addon](https://github.com/Duetting/ha_eos_addon) — Additional
details can be found in this
[discussion thread](https://github.com/Akkudoktor-EOS/EOS/discussions/294).
details can be found in this [discussion thread](https://github.com/Akkudoktor-EOS/EOS/discussions/294).

View File

@@ -0,0 +1,180 @@
% SPDX-License-Identifier: Apache-2.0
# Introduction
The Energy System Simulation and Optimization System (EOS) provides a comprehensive
solution for simulating and optimizing an energy system based on renewable energy
sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load
management (consumer requirements), heat pumps, electric vehicles, and consideration of
electricity price data, this system enables forecasting and optimization of energy flow
and costs over a specified period.
After successfully installing a PV system with or without battery storage, most owners
first priority is often to charge the electric car with surplus energy in order to use
the electricity generated by the PV system cost-effectively for electromobility.
After initial experiences, the desire to include battery storage and dynamic electricity
prices in the solution soon arises. The market already offers various commercial and
non-commercial solutions for this, such as the popular open source hardware and software
solutions evcc or openWB.
Some solutions take into account the current values of the system such as PV power
output, battery storage charge level or the current electricity price to decide whether
to charge the electric car with PV surplus or from the grid (e.g. openWB), some use
historical consumption values and PV forecast data for their calculations, but leave out
the current electricity prices and charging the battery storage from the power grid
(Predbat). Others are specialiced on working in combination with a specific smart home
solution (e.g. emhass). Still others focus on certain consumers, such as the electric car,
or are currently working on integrating the forecast values (evcc). And some are commercial
devices that require an electrician to install them and expect a certain ecosystem
(e.g. Sunny Home Manager).
The Akkudoktor EOS
- takes into account historical, current and forecast data such as consumption values, PV
forecast data, electricity price forecast, battery storage and electric car charge levels
- the simulation also takes into account the possibility of charging the battery storage
from the grid at low electricity prices
- is not limited to certain consumers, but includes electric cars, heat pumps or more
powerful consumers such as tumble dryers
- is independent of a specific smart home solution and can also be integrated into
self-developed solutions if desired
- is a free and independent open source software solution
![Introdution](../_static/introduction/introduction.png)
The challenge is to charge (electric car) or start the consumers (washing machine, dryer)
at the right time and to do so as cost-efficiently as possible. If PV yield forecast,
battery storage and dynamic electricity price forecasts are included in the calculation,
the possibilities increase, but unfortunately so does the complexity.
The Akkudoktor EOS addresses this challenge by simulating energy flows in the household
based on target values, forecast data and current operating data over a 48-hour
observation period, running through a large number of different scenarios and finally
providing a cost-optimized plan for the current day controlling the relevant consumers.
## Prerequisites
- Technical requirements
- Input data
### Technical requirements
- reasonably fast computer on which EOS is installed
- controllable energy system consisting of photovoltaic system, solar battery storage,
energy intensive consumers that must provide the appropriate interfaces
- integration solution for integrating the energy system and EOS
### Input Data
![Overview](../_static/introduction/overview.png)
The EOS requires various types of data for the simulation:
Forecast data
- PV yield forecast
- Expected household consumption
- Electricity price forecast
- Forecast temperature trend (if heatpump is used)
Basic data and current operating data
- Current charge level of the battery storage
- Value of electricity in the battery storage
- Current charge level of the electric car
- Energy consumption and running time of dishwasher, washing machine and tumble dryer
Target values
- Charge level the electric car should reach in the next few hours
- Consumers to run in the next few hours
There are various service providers available for PV forecasting that calculate forecast
data for a PV system based on the various influencing factors, such as system size,
orientation, location, time of year and weather conditions. EOS also offers a
[PV forecasting service](#prediction-page) which can be used. This service uses
public data in the background.
For the forecast of household consumption EOS provides a standard load curve for an
average day based on annual household consumption that you can fetch via API. This data
was compiled based on data from several households and provides an initial usable basis.
Alternatively your own collected historical data could be used to reflect your personal
consumption behaviour.
## Simulation Results
Based on the input data, the EOS uses a genetic algorithm to create a cost-optimized
schedule for the coming hours from numerous simulations of the overall system.
The plan created contains for each of the coming hours
- Control information
- whether and with what power the battery storage should be charged from the grid
- when the battery storage should be charged via the PV system
- whether discharging the battery storage is permitted or not
- when and with what power the electric car should be charged
- when a household appliance should be activated
- Energy history information
- Total load of the house
- Grid consumption
- Feed-in
- Load of the planned household appliances
- Charge level of the battery storage
- Charge level of the electric car
- Active losses
- Cost information
- Revenue per hour (when fed into the grid)
- Total costs per hour (when drawn from the grid)
- Overall balance (revenue-costs)
- Cost development
If required, the simulation result can also be created and downloaded in graphical
form as a PDF from EOS.
## Integration
The Akkudoktor EOS can be integrated into a wide variety of systems with a variety
of components.
![Integration](../_static/introduction/integration.png)
However, the components are not integrated by the EOS itself, but must be intergrated by
the user using an integration solution and currently requires some effort and technical
know-how.
Any [integration](#integration-page) solution that can act as an intermediary between the
components and the REST API of EOS can be used. One possible solution that enables the
integration of components and EOS is Node-RED. Another solution could be Home Assistant
usings its built in features.
Access to the data and functions of the components can be done in a variety of ways.
Node-RED offers a large number of types of nodes that allow access via the protocols
commonly used in this area, such as Modbus or MQTT. Access to any existing databases,
such as InfluxDB or PostgreSQL, is also possible via nodes provided by Node-RED.
It becomes easier if a smart home solution like Homa Assistant, openHAB or ioBroker or
solutions such as evcc or openWB are already in use. In this case, these smart home
solutions already take over the technical integration and communication with the components
at a technical level and Node-RED offers nodes for accessing these solutions, so that the
corresponding sources can be easily integrated into a flow.
In Home Assistant you could use an automation to prepare the input payload for EOS and
then use the RESTful integration to call EOS. Based on this concept there is already a
home assistand add-on created by [Duetting](#duetting-solution).
The plan created by EOS must also be executed via the chosen integration solution,
with the respective devices receiving their instructions according to the plan.
## Limitations
The plan calculated by EOS is cost-optimized due to the genetic algorithm used, but not
necessarily cost-optimal, since genetic algorithms do not always find the global optimum,
but usually find good local optima very quickly in a large solution space.
## Links
- [German Video explaining the basic concept and installation process for the early version of EOS (YouTube)](https://www.youtube.com/live/ftQULW4-1ts?si=oDdBBifCpUmiCXaY)
- [German Forum of Akkudoktor EOS](https://akkudoktor.net/c/der-akkudoktor/eos)
- [Akkudoktor-EOS GitHub Repository](https://github.com/Akkudoktor-EOS/EOS)
- [Latest EOS Documentation](https://akkudoktor-eos.readthedocs.io/en/latest/)

View File

@@ -5,9 +5,9 @@
Measurements are utilized to refine predictions using real data from your system, thereby enhancing
accuracy.
- **Household Load Measurement**
- **Grid Export Measurement**
- **Grid Import Measurement**
- Household Load Measurement
- Grid Export Measurement
- Grid Import Measurement
## Storing Measurements
@@ -56,21 +56,21 @@ A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html)
The EOS measurement store provides for storing meter readings of loads. There are currently five loads
foreseen. The associated `measurement key`s are:
- `load0_mr`: Load0 meter reading [kWh]
- `load1_mr`: Load1 meter reading [kWh]
- `load2_mr`: Load2 meter reading [kWh]
- `load3_mr`: Load3 meter reading [kWh]
- `load4_mr`: Load4 meter reading [kWh]
- `measurement_load0_mr`: Load0 meter reading [kWh]
- `measurement_load1_mr`: Load1 meter reading [kWh]
- `measurement_load2_mr`: Load2 meter reading [kWh]
- `measurement_load3_mr`: Load3 meter reading [kWh]
- `measurement_load4_mr`: Load4 meter reading [kWh]
For ease of use, you can assign descriptive names to the `measurement key`s to represent your
system's load sources. Use the following `configuration options` to set these names
(e.g., 'Dish Washer', 'Heat Pump'):
- `load0_name`: Name of the load0 source
- `load1_name`: Name of the load1 source
- `load2_name`: Name of the load2 source
- `load3_name`: Name of the load3 source
- `load4_name`: Name of the load4 source
- `measurement_load0_name`: Name of the load0 source
- `measurement_load1_name`: Name of the load1 source
- `measurement_load2_name`: Name of the load2 source
- `measurement_load3_name`: Name of the load3 source
- `measurement_load4_name`: Name of the load4 source
Load measurements can be stored for any datetime. The values between different meter readings are
linearly approximated. Since optimization occurs on the hour, storing values between hours is
@@ -84,8 +84,8 @@ for specified intervals, usually one hour. This aggregated data can be used for
The EOS measurement store also allows for the storage of meter readings for grid import and export.
The associated `measurement key`s are:
- `grid_export_mr`: Export to grid meter reading [kWh]
- `grid_import_mr`: Import from grid meter reading [kWh]
- `measurement_grid_export_mr`: Export to grid meter reading [kWh]
- `measurement_grid_import_mr`: Import from grid meter reading [kWh]
:::{admonition} Todo
:class: note

View File

@@ -2,7 +2,199 @@
# Optimization
:::{admonition} Todo
:class: note
Describe optimization.
:::
## Introduction
The `POST /optimize` API endpoint optimizes your energy management system based on various inputs
including electricity prices, battery storage capacity, PV forecast, and temperature data.
## Input Payload
### Sample Request
```json
{
"ems": {
"preis_euro_pro_wh_akku": 0.0007,
"einspeiseverguetung_euro_pro_wh": 0.00007,
"gesamtlast": [500, 500, ..., 500, 500],
"pv_prognose_wh": [300, 0, 0, ..., 2160, 1840],
"strompreis_euro_pro_wh": [0.0003784, 0.0003868, ..., 0.00034102, 0.00033709]
},
"pv_akku": {
"capacity_wh": 12000,
"charging_efficiency": 0.92,
"discharging_efficiency": 0.92,
"max_charge_power_w": 5700,
"initial_soc_percentage": 66,
"min_soc_percentage": 5,
"max_soc_percentage": 100
},
"inverter": {
"max_power_wh": 15500
},
"eauto": {
"capacity_wh": 64000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"max_charge_power_w": 11040,
"initial_soc_percentage": 98,
"min_soc_percentage": 60,
"max_soc_percentage": 100
},
"temperature_forecast": [18.3, 18, ..., 20.16, 19.84],
"start_solution": null
}
```
## Input Parameters
### Energy Management System (EMS)
#### Battery Cost (`preis_euro_pro_wh_akku`)
- Unit: €/Wh
- Purpose: Represents the residual value of energy stored in the battery
- Impact: Lower values encourage battery depletion, higher values preserve charge at the end of the simulation.
#### Feed-in Tariff (`einspeiseverguetung_euro_pro_wh`)
- Unit: €/Wh
- Purpose: Compensation received for feeding excess energy back to the grid
#### Total Load Forecast (`gesamtlast`)
- Unit: W
- Time Range: 48 hours (00:00 today to 23:00 tomorrow)
- Format: Array of hourly values
- Note: Exclude optimizable loads (EV charging, battery charging, etc.)
##### Data Sources
1. Standard Load Profile: `GET /v1/prediction/list?key=load_mean` for a standard load profile based
on your yearly consumption.
2. Adjusted Load Profile: `GET /v1/prediction/list?key=load_mean_adjusted` for a combination of a
standard load profile based on your yearly consumption incl. data from last 48h.
#### PV Generation Forecast (`pv_prognose_wh`)
- Unit: W
- Time Range: 48 hours (00:00 today to 23:00 tomorrow)
- Format: Array of hourly values
- Data Source: `GET /v1/prediction/series?key=pvforecast_ac_power`
#### Electricity Price Forecast (`strompreis_euro_pro_wh`)
- Unit: €/Wh
- Time Range: 48 hours (00:00 today to 23:00 tomorrow)
- Format: Array of hourly values
- Data Source: `GET /v1/prediction/list?key=elecprice_marketprice_wh`
Verify prices against your local tariffs.
### Battery Storage System
#### Configuration
- `capacity_wh`: Total battery capacity in Wh
- `charging_efficiency`: Charging efficiency (0-1)
- `discharging_efficiency`: Discharging efficiency (0-1)
- `max_charge_power_w`: Maximum charging power in W
#### State of Charge (SoC)
- `initial_soc_percentage`: Current battery level (%)
- `min_soc_percentage`: Minimum allowed SoC (%)
- `max_soc_percentage`: Maximum allowed SoC (%)
### Inverter
- `max_power_wh`: Maximum inverter power in Wh
### Electric Vehicle (EV)
- `capacity_wh`: Battery capacity in Wh
- `charging_efficiency`: Charging efficiency (0-1)
- `discharging_efficiency`: Discharging efficiency (0-1)
- `max_charge_power_w`: Maximum charging power in W
- `initial_soc_percentage`: Current charge level (%)
- `min_soc_percentage`: Minimum allowed SoC (%)
- `max_soc_percentage`: Maximum allowed SoC (%)
### Temperature Forecast
- Unit: °C
- Time Range: 48 hours (00:00 today to 23:00 tomorrow)
- Format: Array of hourly values
- Data Source: `GET /v1/prediction/list?key=weather_temp_air`
## Output Format
### Sample Response
```json
{
"ac_charge": [0.625, 0, ..., 0.75, 0],
"dc_charge": [1, 1, ..., 1, 1],
"discharge_allowed": [0, 0, 1, ..., 0, 0],
"eautocharge_hours_float": [0.625, 0, ..., 0.75, 0],
"result": {
"Last_Wh_pro_Stunde": [...],
"EAuto_SoC_pro_Stunde": [...],
"Einnahmen_Euro_pro_Stunde": [...],
"Gesamt_Verluste": 1514.96,
"Gesamtbilanz_Euro": 2.51,
"Gesamteinnahmen_Euro": 2.88,
"Gesamtkosten_Euro": 5.39,
"akku_soc_pro_stunde": [...]
}
}
```
### Output Parameters
#### Battery Control
- `ac_charge`: Grid charging schedule (0-1)
- `dc_charge`: DC charging schedule (0-1)
- `discharge_allowed`: Discharge permission (0 or 1)
0 (no charge)
1 (charge with full load)
`ac_charge` multiplied by the maximum charge power of the battery results in the planned charging power.
#### EV Charging
- `eautocharge_hours_float`: EV charging schedule (0-1)
#### Results
The `result` object contains detailed information about the optimization outcome.
The length of the array is between 25 and 48 and starts at the current hour and ends at 23:00 tomorrow.
- `Last_Wh_pro_Stunde`: Array of hourly load values in Wh
- Shows the total energy consumption per hour
- Includes household load, battery charging/discharging, and EV charging
- `EAuto_SoC_pro_Stunde`: Array of hourly EV state of charge values (%)
- Shows the projected EV battery level throughout the optimization period
- `Einnahmen_Euro_pro_Stunde`: Array of hourly revenue values in Euro
- `Gesamt_Verluste`: Total energy losses in Wh
- `Gesamtbilanz_Euro`: Overall financial balance in Euro
- `Gesamteinnahmen_Euro`: Total revenue in Euro
- `Gesamtkosten_Euro`: Total costs in Euro
- `akku_soc_pro_stunde`: Array of hourly battery state of charge values (%)
## Timeframe overview
```{figure} ../_static/optimization_timeframes.png
:alt: Timeframe Overview
Timeframe Overview
```

View File

@@ -1,14 +1,15 @@
% SPDX-License-Identifier: Apache-2.0
(prediction-page)=
# Predictions
Predictions, along with simulations and measurements, form the foundation upon which energy
optimization is executed. In EOS, a standard set of predictions is managed, including:
- **Household Load Prediction**
- **Electricity Price Prediction**
- **PV Power Prediction**
- **Weather Prediction**
- Household Load Prediction
- Electricity Price Prediction
- PV Power Prediction
- Weather Prediction
## Storing Predictions
@@ -19,14 +20,10 @@ data is lost on re-start of the EOS REST server.
## Prediction Providers
Most predictions can be sourced from various providers. The specific provider to use is configured
in the EOS configuration and can be set by prediction type. For example:
in the EOS configuration. For example:
```python
{
"weather": {
"provider": "ClearOutside"
}
}
weather_provider = "ClearOutside"
```
Some providers offer multiple prediction keys. For instance, a weather provider might provide data
@@ -60,13 +57,15 @@ A dictionary with the following structure:
#### 2. DateTimeDataFrame
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) dataframe with a
`DatetimeIndex`. Use [pandas.DataFrame.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json).
`DatetimeIndex`. Use
[pandas.DataFrame.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json).
The column name of the data must be the same as the names of the `prediction key`s.
#### 3. DateTimeSeries
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) series with a
`DatetimeIndex`. Use [pandas.Series.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.Series.to_json.html#pandas.Series.to_json).
`DatetimeIndex`. Use
[pandas.Series.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.Series.to_json.html#pandas.Series.to_json).
## Adjusted Predictions
@@ -75,7 +74,7 @@ predictions are adjusted by real data from your system's measurements if given t
For example, the load prediction provider `LoadAkkudoktor` takes generic load data assembled by
Akkudoktor.net, maps that to the yearly energy consumption given in the configuration option
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `loads`
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `measurement_loads`
of your system.
## Prediction Updates
@@ -111,23 +110,21 @@ Prediction keys:
Configuration options:
- `elecprice`: Electricity price configuration.
- `provider`: Electricity price provider id of provider to be used.
- `elecprice_provider`: Electricity price provider id of provider to be used.
- `ElecPriceAkkudoktor`: Retrieves from Akkudoktor.net.
- `ElecPriceImport`: Imports from a file or JSON string.
- `charges_kwh`: Electricity price charges (€/kWh).
- `provider_settings.import_file_path`: Path to the file to import electricity price forecast data from.
- `provider_settings.import_json`: JSON string, dictionary of electricity price forecast value lists.
- `elecprice_charges_kwh`: Electricity price charges (€/kWh).
- `elecpriceimport_file_path`: Path to the file to import electricity price forecast data from.
- `elecpriceimport_json`: JSON string, dictionary of electricity price forecast value lists.
### ElecPriceAkkudoktor Provider
The `ElecPriceAkkudoktor` provider retrieves electricity prices directly from **Akkudoktor.net**,
which supplies price data for the next 24 hours. For periods beyond 24 hours, the provider generates
prices by extrapolating historical price data combined with the most recent actual prices obtained
from Akkudoktor.net. Electricity price charges given in the `charges_kwh` configuration
from Akkudoktor.net. Electricity price charges given in the `elecprice_charges_kwh` configuration
option are added.
### ElecPriceImport Provider
@@ -142,7 +139,7 @@ The prediction key for the electricity price forecast data is:
The electricity proce forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option.
`elecpriceimport_file_path` or `elecpriceimport_json` configuration option.
## Load Prediction
@@ -154,16 +151,14 @@ Prediction keys:
Configuration options:
- `load`: Load configuration.
- `provider`: Load provider id of provider to be used.
- `load_provider`: Load provider id of provider to be used.
- `LoadAkkudoktor`: Retrieves from local database.
- `LoadImport`: Imports from a file or JSON string.
- `provider_settings.loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
- `provider_settings.loadimport_file_path`: Path to the file to import load forecast data from.
- `provider_settings.loadimport_json`: JSON string, dictionary of load forecast value lists.
- `loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
- `loadimport_file_path`: Path to the file to import load forecast data from.
- `loadimport_json`: JSON string, dictionary of load forecast value lists.
### LoadAkkudoktor Provider
@@ -196,72 +191,111 @@ Prediction keys:
Configuration options:
- `general`: General configuration.
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `pvforecast`: PV forecast configuration.
- `provider`: PVForecast provider id of provider to be used.
- `pvforecast_provider`: PVForecast provider id of provider to be used.
- `PVForecastAkkudoktor`: Retrieves from Akkudoktor.net.
- `PVForecastImport`: Imports from a file or JSON string.
- `planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `planes[].peakpower`: Nominal power of PV system in kW.
- `planes[].pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `planes[].mountingplace`: Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `planes[].loss`: Sum of PV system losses in percent
- `planes[].trackingtype`: Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `planes[].optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `planes[].optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `planes[].albedo`: Proportion of the light hitting the ground that it reflects back.
- `planes[].module_model`: Model of the PV modules of this plane.
- `planes[].inverter_model`: Model of the inverter of this plane.
- `planes[].inverter_paco`: AC power rating of the inverter. [W]
- `planes[].modules_per_string`: Number of the PV modules of the strings of this plane.
- `planes[].strings_per_inverter`: Number of the strings of the inverter of this plane.
- `provider_settings.import_file_path`: Path to the file to import PV forecast data from.
- `provider_settings.import_json`: JSON string, dictionary of PV forecast value lists.
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
- `pvforecast<0..5>_pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast<0..5>_mountingplace`: Type of mounting for PV system. Options are 'free' for free-standing
and 'building' for building-integrated.
- `pvforecast<0..5>_loss`: Sum of PV system losses in percent
- `pvforecast<0..5>_trackingtype`: Type of suntracking. 0=fixed,
1=single horizontal axis aligned north-south,
2=two-axis tracking,
3=vertical axis tracking,
4=single horizontal axis aligned east-west,
5=single inclined axis aligned north-south.
- `pvforecast<0..5>_optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast<0..5>_optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast<0..5>_albedo`: Proportion of the light hitting the ground that it reflects back.
- `pvforecast<0..5>_module_model`: Model of the PV modules of this plane.
- `pvforecast<0..5>_inverter_model`: Model of the inverter of this plane.
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast<0..5>_modules_per_string`: Number of the PV modules of the strings of this plane.
- `pvforecast<0..5>_strings_per_inverter`: Number of the strings of the inverter of this plane.
- `pvforecastimport_file_path`: Path to the file to import PV forecast data from.
- `pvforecastimport_json`: JSON string, dictionary of PV forecast value lists.
------
---
Some of the planes configuration options directly follow the [PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en) nomenclature.
Some of the configuration options directly follow the
[PVGIS](https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en)
nomenclature.
Detailed definitions taken from **PVGIS**:
- `pvtechchoice`
- `pvforecast<0..5>_pvtechchoice`
The performance of PV modules depends on the temperature and on the solar irradiance, but the exact dependence varies between different types of PV modules. At the moment we can estimate the losses due to temperature and irradiance effects for the following types of modules: crystalline silicon cells; thin film modules made from CIS or CIGS and thin film modules made from Cadmium Telluride (CdTe).
The performance of PV modules depends on the temperature and on the solar irradiance, but the exact
dependence varies between different types of PV modules. At the moment we can estimate the losses
due to temperature and irradiance effects for the following types of modules: crystalline silicon
cells; thin film modules made from CIS or CIGS and thin film modules made from Cadmium Telluride
(CdTe).
For other technologies (especially various amorphous technologies), this correction cannot be calculated here. If you choose one of the first three options here the calculation of performance will take into account the temperature dependence of the performance of the chosen technology. If you choose the other option (other/unknown), the calculation will assume a loss of 8% of power due to temperature effects (a generic value which has found to be reasonable for temperate climates).
For other technologies (especially various amorphous technologies), this correction cannot be
calculated here. If you choose one of the first three options here the calculation of performance
will take into account the temperature dependence of the performance of the chosen technology. If
you choose the other option (other/unknown), the calculation will assume a loss of 8% of power due
to temperature effects (a generic value which has found to be reasonable for temperate climates).
PV power output also depends on the spectrum of the solar radiation. PVGIS can calculate how the variations of the spectrum of sunlight affects the overall energy production from a PV system. At the moment this calculation can be done for crystalline silicon and CdTe modules. Note that this calculation is not yet available when using the NSRDB solar radiation database.
PV power output also depends on the spectrum of the solar radiation. PVGIS can calculate how the
variations of the spectrum of sunlight affects the overall energy production from a PV system. At
the moment this calculation can be done for crystalline silicon and CdTe modules. Note that this
calculation is not yet available when using the NSRDB solar radiation database.
- `peakpower`
- `pvforecast<0..5>_peakpower`
This is the power that the manufacturer declares that the PV array can produce under standard test conditions (STC), which are a constant 1000W of solar irradiation per square meter in the plane of the array, at an array temperature of 25°C. The peak power should be entered in kilowatt-peak (kWp). If you do not know the declared peak power of your modules but instead know the area of the modules and the declared conversion efficiency (in percent), you can calculate the peak power as power = area * efficiency / 100.
This is the power that the manufacturer declares that the PV array can produce under standard test
conditions (STC), which are a constant 1000W of solar irradiation per square meter in the plane of
the array, at an array temperature of 25°C. The peak power should be entered in kilowatt-peak (kWp).
If you do not know the declared peak power of your modules but instead know the area of the modules
and the declared conversion efficiency (in percent), you can calculate the peak power as
power = area \* efficiency / 100.
Bifacial modules: PVGIS doesn't make specific calculations for bifacial modules at present. Users who wish to explore the possible benefits of this technology can input the power value for Bifacial Nameplate Irradiance. This can also be can also be estimated from the front side peak power P_STC value and the bifaciality factor, φ (if reported in the module data sheet) as: P_BNPI = P_STC * (1 + φ * 0.135). NB this bifacial approach is not appropriate for BAPV or BIPV installations or for modules mounting on a N-S axis i.e. facing E-W.
Bifacial modules: PVGIS doesn't make specific calculations for bifacial modules at present. Users
who wish to explore the possible benefits of this technology can input the power value for Bifacial
Nameplate Irradiance. This can also be can also be estimated from the front side peak power P_STC
value and the bifaciality factor, φ (if reported in the module data sheet) as:
P_BNPI = P_STC \* (1 + φ \* 0.135). NB this bifacial approach is not appropriate for BAPV or BIPV
installations or for modules mounting on a N-S axis i.e. facing E-W.
- `loss`
- `pvforecast<0..5>_loss`
The estimated system losses are all the losses in the system, which cause the power actually delivered to the electricity grid to be lower than the power produced by the PV modules. There are several causes for this loss, such as losses in cables, power inverters, dirt (sometimes snow) on the modules and so on. Over the years the modules also tend to lose a bit of their power, so the average yearly output over the lifetime of the system will be a few percent lower than the output in the first years.
The estimated system losses are all the losses in the system, which cause the power actually
delivered to the electricity grid to be lower than the power produced by the PV modules. There are
several causes for this loss, such as losses in cables, power inverters, dirt (sometimes snow) on
the modules and so on. Over the years the modules also tend to lose a bit of their power, so the
average yearly output over the lifetime of the system will be a few percent lower than the output
in the first years.
We have given a default value of 14% for the overall losses. If you have a good idea that your value will be different (maybe due to a really high-efficiency inverter) you may reduce this value a little.
We have given a default value of 14% for the overall losses. If you have a good idea that your value
will be different (maybe due to a really high-efficiency inverter) you may reduce this value a little.
- `mountingplace`
- `pvforecast<0..5>_mountingplace`
For fixed (non-tracking) systems, the way the modules are mounted will have an influence on the temperature of the module, which in turn affects the efficiency. Experiments have shown that if the movement of air behind the modules is restricted, the modules can get considerably hotter (up to 15°C at 1000W/m2 of sunlight).
For fixed (non-tracking) systems, the way the modules are mounted will have an influence on the
temperature of the module, which in turn affects the efficiency. Experiments have shown that if the
movement of air behind the modules is restricted, the modules can get considerably hotter
(up to 15°C at 1000W/m2 of sunlight).
In PVGIS there are two possibilities: free-standing, meaning that the modules are mounted on a rack with air flowing freely behind the modules; and building- integrated, which means that the modules are completely built into the structure of the wall or roof of a building, with no air movement behind the modules.
In PVGIS there are two possibilities: free-standing, meaning that the modules are mounted on a rack
with air flowing freely behind the modules; and building- integrated, which means that the modules
are completely built into the structure of the wall or roof of a building, with no air movement
behind the modules.
Some types of mounting are in between these two extremes, for instance if the modules are mounted on a roof with curved roof tiles, allowing air to move behind the modules. In such cases, the performance will be somewhere between the results of the two calculations that are possible here.
Some types of mounting are in between these two extremes, for instance if the modules are mounted on
a roof with curved roof tiles, allowing air to move behind the modules. In such cases, the
performance will be somewhere between the results of the two calculations that are possible here.
- `userhorizon`
- `pvforecast<0..5>_userhorizon`
Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. In the user horizon
data each number represents the horizon height in degrees in a certain compass direction around the
@@ -271,82 +305,71 @@ represent equal angular distance around the horizon. For instance, if you have 3
point is due north, the next is 10 degrees east of north, and so on, until the last point, 10
degrees west of north.
------
---
Most of the planes configuration options are in line with the [PVLib](https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html) definition for PVGIS data.
Most of the configuration options are in line with the
[PVLib](https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html) definition for PVGIS data.
Detailed definitions from **PVLib** for PVGIS data.
- `surface_tilt`:
- `pvforecast<0..5>_surface_tilt`:
Tilt angle from horizontal plane.
- `surface_azimuth`
- `pvforecast<0..5>_surface_azimuth`
Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180,
west=270). This is offset 180 degrees from the convention used by PVGIS.
------
---
### PVForecastAkkudoktor Provider
The `PVForecastAkkudoktor` provider retrieves the PV power forecast data directly from
**Akkudoktor.net**.
The following prediction configuration options of the PV system must be set:
The following general configuration options of the PV system must be set:
- `general.latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `general.longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
For each plane of the PV system the following configuration options must be set:
For each plane `<0..5>` of the PV system the following configuration options must be set:
- `pvforecast.planes[].surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast.planes[].surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast.planes[].userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast.planes[].inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast.planes[].peakpower`: Nominal power of PV system in kW.
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane.
Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
Example:
```Python
{
"general": {
"latitude": 50.1234,
"longitude": 9.7654,
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
}
]
}
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
"pvforecast4_peakpower": None,
}
```
@@ -363,7 +386,7 @@ The prediction keys for the PV forecast data are:
The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option.
`pvforecastimport_file_path` or `pvforecastimport_json` configuration option.
## Weather Prediction
@@ -394,16 +417,14 @@ Prediction keys:
Configuration options:
- `weather`: General weather configuration.
- `weather_provider`: Load provider id of provider to be used.
- `provider`: Load provider id of provider to be used.
- `BrightSky`: Retrieves from https://api.brightsky.dev.
- `ClearOutside`: Retrieves from https://clearoutside.com/forecast.
- `BrightSky`: Retrieves from [BrightSky](https://api.brightsky.dev).
- `ClearOutside`: Retrieves from [ClearOutside](https://clearoutside.com/forecast).
- `LoadImport`: Imports from a file or JSON string.
- `provider_settings.import_file_path`: Path to the file to import weatherforecast data from.
- `provider_settings.import_json`: JSON string, dictionary of weather forecast value lists.
- `weatherimport_file_path`: Path to the file to import weatherforecast data from.
- `weatherimport_json`: JSON string, dictionary of weather forecast value lists.
### BrightSky Provider
@@ -487,4 +508,4 @@ The prediction keys for the PV forecast data are:
The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`import_file_path` or `import_json` configuration option.
`weatherimport_file_path` or `pvforecastimport_json` configuration option.

View File

@@ -99,7 +99,6 @@ html_theme_options = {
"logo_only": False,
"titles_only": True,
}
html_css_files = ["eos.css"]
# -- Options for autodoc -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

View File

@@ -19,6 +19,7 @@ Install the dependencies in a virtual environment:
python -m venv .venv
.venv\Scripts\pip install -r requirements.txt
.venv\Scripts\pip install -e .
.. tab:: Linux
@@ -26,6 +27,7 @@ Install the dependencies in a virtual environment:
python -m venv .venv
.venv/bin/pip install -r requirements.txt
.venv/bin/pip install -e .
```
@@ -73,37 +75,53 @@ This project uses the `EOS.config.json` file to manage configuration settings.
### Default Configuration
A default configuration file `default.config.json` is provided. This file contains all the necessary configuration keys with their default values.
A default configuration file `default.config.json` is provided. This file contains all the necessary
configuration keys with their default values.
### Custom Configuration
Users can specify a custom configuration directory by setting the environment variable `EOS_DIR`.
- If the directory specified by `EOS_DIR` contains an existing `EOS.config.json` file, the application will use this configuration file.
- If the `EOS.config.json` file does not exist in the specified directory, the `default.config.json` file will be copied to the directory as `EOS.config.json`.
- If the directory specified by `EOS_DIR` contains an existing `EOS.config.json` file, the
application will use this configuration file.
- If the `EOS.config.json` file does not exist in the specified directory, the `default.config.json`
file will be copied to the directory as `EOS.config.json`.
### Configuration Updates
If the configuration keys in the `EOS.config.json` file are missing or different from those in `default.config.json`, they will be automatically updated to match the default settings, ensuring that all required keys are present.
If the configuration keys in the `EOS.config.json` file are missing or different from those in
`default.config.json`, they will be automatically updated to match the default settings, ensuring
that all required keys are present.
## Classes and Functionalities
This project uses various classes to simulate and optimize the components of an energy system. Each class represents a specific aspect of the system, as described below:
This project uses various classes to simulate and optimize the components of an energy system. Each
class represents a specific aspect of the system, as described below:
- `Battery`: Simulates a battery storage system, including capacity, state of charge, and now charge and discharge losses.
- `Battery`: Simulates a battery storage system, including capacity, state of charge, and now
charge and discharge losses.
- `PVForecast`: Provides forecast data for photovoltaic generation, based on weather data and historical generation data.
- `PVForecast`: Provides forecast data for photovoltaic generation, based on weather data and
historical generation data.
- `Load`: Models the load requirements of a household or business, enabling the prediction of future energy demand.
- `Load`: Models the load requirements of a household or business, enabling the prediction of future
energy demand.
- `Heatpump`: Simulates a heat pump, including its energy consumption and efficiency under various operating conditions.
- `Heatpump`: Simulates a heat pump, including its energy consumption and efficiency under various
operating conditions.
- `Strompreis`: Provides information on electricity prices, enabling optimization of energy consumption and generation based on tariff information.
- `Strompreis`: Provides information on electricity prices, enabling optimization of energy
consumption and generation based on tariff information.
- `EMS`: The Energy Management System (EMS) coordinates the interaction between the various components, performs optimization, and simulates the operation of the entire energy system.
- `EMS`: The Energy Management System (EMS) coordinates the interaction between the various
components, performs optimization, and simulates the operation of the entire energy system.
These classes work together to enable a detailed simulation and optimization of the energy system. For each class, specific parameters and settings can be adjusted to test different scenarios and strategies.
These classes work together to enable a detailed simulation and optimization of the energy system.
For each class, specific parameters and settings can be adjusted to test different scenarios and
strategies.
### Customization and Extension
Each class is designed to be easily customized and extended to integrate additional functions or improvements. For example, new methods can be added for more accurate modeling of PV system or battery behavior. Developers are invited to modify and extend the system according to their needs.
Each class is designed to be easily customized and extended to integrate additional functions or
improvements. For example, new methods can be added for more accurate modeling of PV system or
battery behavior. Developers are invited to modify and extend the system according to their needs.

View File

@@ -8,12 +8,32 @@
```{toctree}
:maxdepth: 2
:caption: 'Contents:'
:caption: Overview
akkudoktoreos/introduction.md
```
```{toctree}
:maxdepth: 2
:caption: Tutorials
welcome.md
akkudoktoreos/about.md
develop/getting_started.md
```
```{toctree}
:maxdepth: 2
:caption: How-To Guides
develop/CONTRIBUTING.md
```
```{toctree}
:maxdepth: 2
:caption: Reference
akkudoktoreos/architecture.md
akkudoktoreos/configuration.md
akkudoktoreos/optimization.md
@@ -22,9 +42,10 @@ akkudoktoreos/measurement.md
akkudoktoreos/integration.md
akkudoktoreos/serverapi.md
akkudoktoreos/api.rst
```
# Indices and tables
## Indices and tables
- {ref}`genindex`
- {ref}`modindex`

20
docs/pymarkdown.json Normal file
View File

@@ -0,0 +1,20 @@
{
"plugins": {
"md007": {
"enabled": true,
"code_block_line_length" : 160
},
"md013": {
"enabled": true,
"line_length" : 120
},
"md041": {
"enabled": false
}
},
"extensions": {
"front-matter" : {
"enabled" : true
}
}
}

View File

@@ -1,12 +1,12 @@
% SPDX-License-Identifier: Apache-2.0
# Welcome to the EOS documentation!
# Welcome to the EOS documentation
This documentation is continuously written. It is edited via text files in the
[Markdown/ Markedly Structured Text](https://myst-parser.readthedocs.io/en/latest/index.html)
markup language and then compiled into a static website/ offline document using the open source tool
[Sphinx](https://www.sphinx-doc.org) and will someday land on
[Read the Docs](https://akkudoktoreos.readthedocs.io/en/latest/index.html).
[Sphinx](https://www.sphinx-doc.org) and is available on
[Read the Docs](https://akkudoktor-eos.readthedocs.io/en/latest/).
You can contribute to EOS's documentation by opening
[GitHub issues](https://github.com/Akkudoktor-EOS/EOS/issues)

11435
openapi.json

File diff suppressed because it is too large Load Diff

View File

@@ -7,7 +7,7 @@ authors = [
description = "This project provides a comprehensive solution for simulating and optimizing an energy system based on renewable energy sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements), heat pumps, electric vehicles, and consideration of electricity price data, this system enables forecasting and optimization of energy flow and costs over a specified period."
readme = "README.md"
license = {file = "LICENSE"}
requires-python = ">=3.10"
requires-python = ">=3.11"
classifiers = [
"Development Status :: 3 - Alpha",
"Programming Language :: Python :: 3",

View File

@@ -1,14 +1,14 @@
-r requirements.txt
gitpython==3.1.44
linkify-it-py==2.0.3
myst-parser==4.0.0
sphinx==8.1.3
myst-parser==4.0.1
sphinx==8.2.3
sphinx_rtd_theme==3.0.2
sphinx-tabs==3.4.7
pytest==8.3.4
pytest==8.3.5
pytest-cov==6.0.0
pytest-xprocess==1.0.2
pre-commit
mypy==1.13.0
types-requests==2.32.0.20241016
pandas-stubs==2.2.3.241126
mypy==1.15.0
types-requests==2.32.0.20250306
pandas-stubs==2.2.3.250308

View File

@@ -1,8 +1,8 @@
numpy==2.2.2
numpydantic==1.6.7
matplotlib==3.10.0
fastapi[standard]==0.115.7
python-fasthtml==0.12.0
numpy==2.2.4
numpydantic==1.6.8
matplotlib==3.10.1
fastapi[standard]==0.115.11
python-fasthtml==0.12.4
uvicorn==0.34.0
scikit-learn==1.6.1
timezonefinder==6.5.8
@@ -10,8 +10,7 @@ deap==1.4.2
requests==2.32.3
pandas==2.2.3
pendulum==3.0.0
platformdirs==4.3.6
pvlib==0.11.2
platformdirs==4.3.7
pvlib==0.12.0
pydantic==2.10.6
statsmodels==0.14.4
pydantic-settings==2.7.0

View File

@@ -2,279 +2,132 @@
"""Utility functions for Configuration specification generation."""
import argparse
import json
import sys
import textwrap
from pathlib import Path
from typing import Any, Union
from pydantic.fields import ComputedFieldInfo, FieldInfo
from pydantic_core import PydanticUndefined
from akkudoktoreos.config.config import ConfigEOS, GeneralSettings, get_config
from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.docs import get_model_structure_from_examples
logger = get_logger(__name__)
config_eos = get_config()
documented_types: set[PydanticBaseModel] = set()
undocumented_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
# Fixed set of prefixes to filter configuration values and their respective titles
CONFIG_PREFIXES = {
"battery": "Battery Device Simulation Configuration",
"bev": "Battery Electric Vehicle Device Simulation Configuration",
"dishwasher": "Dishwasher Device Simulation Configuration",
"inverter": "Inverter Device Simulation Configuration",
"measurement": "Measurement Configuration",
"optimization": "General Optimization Configuration",
"server": "Server Configuration",
"elecprice": "Electricity Price Prediction Configuration",
"load": "Load Prediction Configuration",
"logging": "Logging Configuration",
"prediction": "General Prediction Configuration",
"pvforecast": "PV Forecast Configuration",
"weather": "Weather Forecast Configuration",
}
global_config_dict: dict[str, Any] = dict()
def get_title(config: PydanticBaseModel) -> str:
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return config.__doc__.strip().splitlines()[0].strip(".")
def get_body(config: PydanticBaseModel) -> str:
if config.__doc__ is None:
raise NameError(f"Missing docstring: {config}")
return textwrap.dedent("\n".join(config.__doc__.strip().splitlines()[1:])).strip()
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
resolved_types: list[tuple[type, list[str]]] = []
origin = getattr(field_type, "__origin__", field_type)
if origin is Union:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types))
elif origin is list:
for arg in getattr(field_type, "__args__", []):
resolved_types.extend(resolve_nested_types(arg, parent_types + ["list"]))
else:
resolved_types.append((field_type, parent_types))
return resolved_types
def create_model_from_examples(
model_class: PydanticBaseModel, multiple: bool
) -> list[PydanticBaseModel]:
"""Create a model instance with default or example values, respecting constraints."""
return [
model_class(**data) for data in get_model_structure_from_examples(model_class, multiple)
# Static set of configuration names to include in a separate table
GENERAL_CONFIGS = [
"config_default_file_path",
"config_file_path",
"config_folder_path",
"config_keys",
"config_keys_read_only",
"data_cache_path",
"data_cache_subpath",
"data_folder_path",
"data_output_path",
"data_output_subpath",
"latitude",
"longitude",
"package_root_path",
"timezone",
]
def build_nested_structure(keys: list[str], value: Any) -> Any:
if not keys:
return value
current_key = keys[0]
if current_key == "list":
return [build_nested_structure(keys[1:], value)]
else:
return {current_key: build_nested_structure(keys[1:], value)}
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
default_value = ""
if regular_field:
if (val := field_info.default) is not PydanticUndefined:
default_value = val
else:
default_value = "required"
else:
default_value = "N/A"
return default_value
def get_type_name(field_type: type) -> str:
type_name = str(field_type).replace("typing.", "")
if type_name.startswith("<class"):
type_name = field_type.__name__
return type_name
def generate_config_table_md(
config: PydanticBaseModel,
toplevel_keys: list[str],
prefix: str,
toplevel: bool = False,
extra_config: bool = False,
) -> str:
def generate_config_table_md(configs, title):
"""Generate a markdown table for given configurations.
Args:
config (PydanticBaseModel): PydanticBaseModel configuration definition.
prefix (str): Prefix for table entries.
configs (dict): Configuration values with keys and their descriptions.
title (str): Title for the table.
Returns:
str: The markdown table as a string.
"""
table = ""
if toplevel:
title = get_title(config)
if not configs:
return ""
heading_level = "###" if extra_config else "##"
env_header = ""
env_header_underline = ""
env_width = ""
if not extra_config:
env_header = "| Environment Variable "
env_header_underline = "| -------------------- "
env_width = "20 "
table += f"{heading_level} {title}\n\n"
body = get_body(config)
if body:
table += body
table += "\n\n"
table += (
":::{table} "
+ f"{'::'.join(toplevel_keys)}\n:widths: 10 {env_width}10 5 5 30\n:align: left\n\n"
)
table += f"| Name {env_header}| Type | Read-Only | Default | Description |\n"
table += f"| ---- {env_header_underline}| ---- | --------- | ------- | ----------- |\n"
for field_name, field_info in list(config.model_fields.items()) + list(
config.model_computed_fields.items()
):
regular_field = isinstance(field_info, FieldInfo)
config_name = field_name if extra_config else field_name.upper()
field_type = field_info.annotation if regular_field else field_info.return_type
default_value = get_default_value(field_info, regular_field)
description = field_info.description if field_info.description else "-"
read_only = "rw" if regular_field else "ro"
type_name = get_type_name(field_type)
env_entry = ""
if not extra_config:
if regular_field:
env_entry = f"| `{prefix}{config_name}` "
else:
env_entry = "| "
table += f"| {field_name} {env_entry}| `{type_name}` | `{read_only}` | `{default_value}` | {description} |\n"
inner_types: dict[PydanticBaseModel, tuple[str, list[str]]] = dict()
def extract_nested_models(subtype: Any, subprefix: str, parent_types: list[str]):
if subtype in inner_types.keys():
return
nested_types = resolve_nested_types(subtype, [])
for nested_type, nested_parent_types in nested_types:
if issubclass(nested_type, PydanticBaseModel):
new_parent_types = parent_types + nested_parent_types
if "list" in parent_types:
new_prefix = ""
else:
new_prefix = f"{subprefix}"
inner_types.setdefault(nested_type, (new_prefix, new_parent_types))
for nested_field_name, nested_field_info in list(
nested_type.model_fields.items()
) + list(nested_type.model_computed_fields.items()):
nested_field_type = nested_field_info.annotation
if new_prefix:
new_prefix += f"{nested_field_name.upper()}__"
extract_nested_models(
nested_field_type,
new_prefix,
new_parent_types + [nested_field_name],
)
extract_nested_models(field_type, f"{prefix}{config_name}__", toplevel_keys + [field_name])
for new_type, info in inner_types.items():
if new_type not in documented_types:
undocumented_types.setdefault(new_type, (info[0], info[1]))
if toplevel:
table = f"## {title}\n\n"
table += ":::{table} " + f"{title}\n:widths: 10 10 5 5 30\n:align: left\n\n"
table += "| Name | Type | Read-Only | Default | Description |\n"
table += "| ---- | ---- | --------- | ------- | ----------- |\n"
for name, config in sorted(configs.items()):
type_name = config["type"]
if type_name.startswith("typing."):
type_name = type_name[len("typing.") :]
table += f"| `{config['name']}` | `{type_name}` | `{config['read-only']}` | `{config['default']}` | {config['description']} |\n"
table += ":::\n\n" # Add an empty line after the table
has_examples_list = toplevel_keys[-1] == "list"
instance_list = create_model_from_examples(config, has_examples_list)
if instance_list:
ins_dict_list = []
ins_out_dict_list = []
for ins in instance_list:
# Transform to JSON (and manually to dict) to use custom serializers and then merge with parent keys
ins_json = ins.model_dump_json(include_computed_fields=False)
ins_dict_list.append(json.loads(ins_json))
ins_out_json = ins.model_dump_json(include_computed_fields=True)
ins_out_dict_list.append(json.loads(ins_out_json))
same_output = ins_out_dict_list == ins_dict_list
same_output_str = "/Output" if same_output else ""
table += f"#{heading_level} Example Input{same_output_str}\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
input_dict = build_nested_structure(toplevel_keys[:-1], ins_dict_list)
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list
else:
input_dict = build_nested_structure(toplevel_keys, ins_dict_list[0])
if not extra_config:
global_config_dict[toplevel_keys[0]] = ins_dict_list[0]
table += textwrap.indent(json.dumps(input_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
if not same_output:
table += f"#{heading_level} Example Output\n\n"
table += "```{eval-rst}\n"
table += ".. code-block:: json\n\n"
if has_examples_list:
output_dict = build_nested_structure(toplevel_keys[:-1], ins_out_dict_list)
else:
output_dict = build_nested_structure(toplevel_keys, ins_out_dict_list[0])
table += textwrap.indent(json.dumps(output_dict, indent=4), " ")
table += "\n"
table += "```\n\n"
while undocumented_types:
extra_config_type, extra_info = undocumented_types.popitem()
documented_types.add(extra_config_type)
table += generate_config_table_md(
extra_config_type, extra_info[1], extra_info[0], True, True
)
return table
def generate_config_md(config_eos: ConfigEOS) -> str:
def generate_config_md() -> str:
"""Generate configuration specification in Markdown with extra tables for prefixed values.
Returns:
str: The Markdown representation of the configuration spec.
"""
# Fix file path for general settings to not show local/test file path
GeneralSettings._config_file_path = Path(
"/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
)
GeneralSettings._config_folder_path = config_eos.general.config_file_path.parent
configs = {}
config_keys = config_eos.config_keys
config_keys_read_only = config_eos.config_keys_read_only
for config_key in config_keys:
config = {}
config["name"] = config_key
config["value"] = getattr(config_eos, config_key)
if config_key in config_keys_read_only:
config["read-only"] = "ro"
computed_field_info = config_eos.__pydantic_decorators__.computed_fields[
config_key
].info
config["default"] = "N/A"
config["description"] = computed_field_info.description
config["type"] = str(computed_field_info.return_type)
else:
config["read-only"] = "rw"
field_info = config_eos.model_fields[config_key]
config["default"] = field_info.default
config["description"] = field_info.description
config["type"] = str(field_info.annotation)
configs[config_key] = config
# Generate markdown for the main table
markdown = "# Configuration Table\n\n"
# Generate tables for each top level config
for field_name, field_info in config_eos.model_fields.items():
field_type = field_info.annotation
markdown += generate_config_table_md(
field_type, [field_name], f"EOS_{field_name.upper()}__", True
)
# Generate table for general configuration names
general_configs = {k: v for k, v in configs.items() if k in GENERAL_CONFIGS}
for k in general_configs.keys():
del configs[k] # Remove general configs from the main configs dictionary
markdown += generate_config_table_md(general_configs, "General Configuration Values")
# Full config
markdown += "## Full example Config\n\n"
markdown += "```{eval-rst}\n"
markdown += ".. code-block:: json\n\n"
# Test for valid config first
config_eos.merge_settings_from_dict(global_config_dict)
markdown += textwrap.indent(json.dumps(global_config_dict, indent=4), " ")
markdown += "\n"
markdown += "```\n\n"
non_prefixed_configs = {k: v for k, v in configs.items()}
# Assure there is no double \n at end of file
# Generate tables for each prefix (sorted by value) and remove prefixed configs from the main dictionary
sorted_prefixes = sorted(CONFIG_PREFIXES.items(), key=lambda item: item[1])
for prefix, title in sorted_prefixes:
prefixed_configs = {k: v for k, v in configs.items() if k.startswith(prefix)}
for k in prefixed_configs.keys():
del non_prefixed_configs[k]
markdown += generate_config_table_md(prefixed_configs, title)
# Generate markdown for the remaining non-prefixed configs if any
if non_prefixed_configs:
markdown += generate_config_table_md(non_prefixed_configs, "Other Configuration Values")
# Assure the is no double \n at end of file
markdown = markdown.rstrip("\n")
markdown += "\n"
@@ -292,10 +145,9 @@ def main():
)
args = parser.parse_args()
config_eos = get_config()
try:
config_md = generate_config_md(config_eos)
config_md = generate_config_md()
if args.output_file:
# Write to file
with open(args.output_file, "w", encoding="utf8") as f:
@@ -306,8 +158,7 @@ def main():
except Exception as e:
print(f"Error during Configuration Specification generation: {e}", file=sys.stderr)
# keep throwing error to debug potential problems (e.g. invalid examples)
raise e
sys.exit(1)
if __name__ == "__main__":

View File

@@ -37,11 +37,6 @@ def generate_openapi() -> dict:
routes=app.routes,
)
# Fix file path for general settings to not show local/test file path
general = openapi_spec["components"]["schemas"]["ConfigEOS"]["properties"]["general"]["default"]
general["config_file_path"] = "/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
general["config_folder_path"] = "/home/user/.config/net.akkudoktoreos.net"
return openapi_spec

View File

@@ -30,63 +30,42 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
"""
# Make a config
settings = {
"general": {
# -- General --
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
# -- Predictions --
# PV Forecast
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
"pvforecast4_peakpower": None,
# Weather Forecast
"weather": {
"provider": "ClearOutside",
},
"weather_provider": "ClearOutside",
# Electricity Price Forecast
"elecprice": {
"provider": "ElecPriceAkkudoktor",
},
"elecprice_provider": "ElecPriceAkkudoktor",
# Load Forecast
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"load_provider": "LoadAkkudoktor",
"loadakkudoktor_year_energy": 5000, # Energy consumption per year in kWh
},
},
# -- Simulations --
}
config_eos = get_config()
@@ -150,20 +129,20 @@ def prepare_optimization_real_parameters() -> OptimizationParameters:
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
"eauto": {
"device_id": "ev1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"inverter": {
"max_power_wh": 10000,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
@@ -304,20 +283,20 @@ def prepare_optimization_parameters() -> OptimizationParameters:
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {"device_id": "iv1", "max_power_wh": 10000, "battery_id": "battery1"},
"eauto": {
"device_id": "ev1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"inverter": {
"max_power_wh": 10000,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
@@ -351,9 +330,7 @@ def run_optimization(
# Initialize the optimization problem using the default configuration
config_eos = get_config()
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 48}}
)
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
opt_class = optimization_problem(verbose=verbose, fixed_seed=seed)
# Perform the optimisation based on the provided parameters and start hour

View File

@@ -16,47 +16,32 @@ prediction_eos = get_prediction()
def config_pvforecast() -> dict:
"""Configure settings for PV forecast."""
settings = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
"pvforecast4_peakpower": None,
}
return settings
@@ -64,15 +49,10 @@ def config_pvforecast() -> dict:
def config_weather() -> dict:
"""Configure settings for weather forecast."""
settings = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"weather": dict(),
}
return settings
@@ -80,15 +60,10 @@ def config_weather() -> dict:
def config_elecprice() -> dict:
"""Configure settings for electricity price forecast."""
settings = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"elecprice": dict(),
}
return settings
@@ -96,14 +71,10 @@ def config_elecprice() -> dict:
def config_load() -> dict:
"""Configure settings for load forecast."""
settings = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
}
return settings
@@ -125,17 +96,17 @@ def run_prediction(provider_id: str, verbose: bool = False) -> str:
print(f"\nProvider ID: {provider_id}")
if provider_id in ("PVForecastAkkudoktor",):
settings = config_pvforecast()
settings["pvforecast"]["provider"] = provider_id
settings["pvforecast_provider"] = provider_id
elif provider_id in ("BrightSky", "ClearOutside"):
settings = config_weather()
settings["weather"]["provider"] = provider_id
settings["weather_provider"] = provider_id
elif provider_id in ("ElecPriceAkkudoktor",):
settings = config_elecprice()
settings["elecprice"]["provider"] = provider_id
settings["elecprice_provider"] = provider_id
elif provider_id in ("LoadAkkudoktor",):
settings = config_elecprice()
settings["load"]["loadakkudoktor_year_energy"] = 1000
settings["load"]["provider"] = provider_id
settings["loadakkudoktor_year_energy"] = 1000
settings["load_provider"] = provider_id
else:
raise ValueError(f"Unknown provider '{provider_id}'.")
config_eos.merge_settings_from_dict(settings)

View File

@@ -12,35 +12,30 @@ Key features:
import os
import shutil
from pathlib import Path
from typing import Any, ClassVar, Optional, Type
from typing import Any, ClassVar, List, Optional
from platformdirs import user_config_dir, user_data_dir
from pydantic import Field, computed_field
from pydantic_settings import (
BaseSettings,
JsonConfigSettingsSource,
PydanticBaseSettingsSource,
SettingsConfigDict,
)
from pydantic_settings.sources import ConfigFileSourceMixin
from pydantic import Field, ValidationError, computed_field
# settings
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.decorators import classproperty
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.logsettings import LoggingCommonSettings
from akkudoktoreos.core.pydantic import merge_models
from akkudoktoreos.devices.settings import DevicesCommonSettings
from akkudoktoreos.devices.devices import DevicesCommonSettings
from akkudoktoreos.measurement.measurement import MeasurementCommonSettings
from akkudoktoreos.optimization.optimization import OptimizationCommonSettings
from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
from akkudoktoreos.prediction.load import LoadCommonSettings
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
from akkudoktoreos.prediction.prediction import PredictionCommonSettings
from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
from akkudoktoreos.prediction.weather import WeatherCommonSettings
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
from akkudoktoreos.server.server import ServerCommonSettings
from akkudoktoreos.utils.datetimeutil import to_timezone
from akkudoktoreos.utils.utils import UtilsCommonSettings
logger = get_logger(__name__)
@@ -64,137 +59,61 @@ def get_absolute_path(
return None
class GeneralSettings(SettingsBaseModel):
"""Settings for common configuration.
General configuration to set directories of cache and output files and system location (latitude
and longitude).
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
determines the time zone based on latitude and longitude.
Attributes:
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
Properties:
timezone (Optional[str]): Computed time zone string based on the specified latitude
and longitude.
Validators:
validate_latitude (float): Ensures `latitude` is within the range -90 to 90.
validate_longitude (float): Ensures `longitude` is within the range -180 to 180.
"""
_config_folder_path: ClassVar[Optional[Path]] = None
_config_file_path: ClassVar[Optional[Path]] = None
class ConfigCommonSettings(SettingsBaseModel):
"""Settings for common configuration."""
data_folder_path: Optional[Path] = Field(
default=None, description="Path to EOS data directory.", examples=[None, "/home/eos/data"]
default=None, description="Path to EOS data directory."
)
data_output_subpath: Optional[Path] = Field(
default="output", description="Sub-path for the EOS output data directory."
"output", description="Sub-path for the EOS output data directory."
)
data_cache_subpath: Optional[Path] = Field(
default="cache", description="Sub-path for the EOS cache data directory."
)
latitude: Optional[float] = Field(
default=52.52,
ge=-90.0,
le=90.0,
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
)
longitude: Optional[float] = Field(
default=13.405,
ge=-180.0,
le=180.0,
description="Longitude in decimal degrees, within -180 to 180 (°)",
"cache", description="Sub-path for the EOS cache data directory."
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def timezone(self) -> Optional[str]:
"""Compute timezone based on latitude and longitude."""
if self.latitude and self.longitude:
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
return None
@computed_field # type: ignore[prop-decorator]
@property
def data_output_path(self) -> Optional[Path]:
"""Compute data_output_path based on data_folder_path."""
return get_absolute_path(self.data_folder_path, self.data_output_subpath)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def data_cache_path(self) -> Optional[Path]:
"""Compute data_cache_path based on data_folder_path."""
return get_absolute_path(self.data_folder_path, self.data_cache_subpath)
@computed_field # type: ignore[prop-decorator]
@property
def config_folder_path(self) -> Optional[Path]:
"""Path to EOS configuration directory."""
return self._config_folder_path
@computed_field # type: ignore[prop-decorator]
@property
def config_file_path(self) -> Optional[Path]:
"""Path to EOS configuration file."""
return self._config_file_path
class SettingsEOS(
ConfigCommonSettings,
LoggingCommonSettings,
DevicesCommonSettings,
MeasurementCommonSettings,
OptimizationCommonSettings,
PredictionCommonSettings,
ElecPriceCommonSettings,
ElecPriceImportCommonSettings,
LoadCommonSettings,
LoadAkkudoktorCommonSettings,
LoadImportCommonSettings,
PVForecastCommonSettings,
PVForecastImportCommonSettings,
WeatherCommonSettings,
WeatherImportCommonSettings,
ServerCommonSettings,
UtilsCommonSettings,
):
"""Settings for all EOS."""
pass
class SettingsEOS(BaseSettings):
"""Settings for all EOS.
Used by updating the configuration with specific settings only.
"""
general: Optional[GeneralSettings] = None
logging: Optional[LoggingCommonSettings] = None
devices: Optional[DevicesCommonSettings] = None
measurement: Optional[MeasurementCommonSettings] = None
optimization: Optional[OptimizationCommonSettings] = None
prediction: Optional[PredictionCommonSettings] = None
elecprice: Optional[ElecPriceCommonSettings] = None
load: Optional[LoadCommonSettings] = None
pvforecast: Optional[PVForecastCommonSettings] = None
weather: Optional[WeatherCommonSettings] = None
server: Optional[ServerCommonSettings] = None
utils: Optional[UtilsCommonSettings] = None
model_config = SettingsConfigDict(
env_nested_delimiter="__",
nested_model_default_partial_update=True,
env_prefix="EOS_",
ignored_types=(classproperty,),
)
class SettingsEOSDefaults(SettingsEOS):
"""Settings for all of EOS with defaults.
Used by ConfigEOS instance to make all fields available.
"""
general: GeneralSettings = GeneralSettings()
logging: LoggingCommonSettings = LoggingCommonSettings()
devices: DevicesCommonSettings = DevicesCommonSettings()
measurement: MeasurementCommonSettings = MeasurementCommonSettings()
optimization: OptimizationCommonSettings = OptimizationCommonSettings()
prediction: PredictionCommonSettings = PredictionCommonSettings()
elecprice: ElecPriceCommonSettings = ElecPriceCommonSettings()
load: LoadCommonSettings = LoadCommonSettings()
pvforecast: PVForecastCommonSettings = PVForecastCommonSettings()
weather: WeatherCommonSettings = WeatherCommonSettings()
server: ServerCommonSettings = ServerCommonSettings()
utils: UtilsCommonSettings = UtilsCommonSettings()
class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
class ConfigEOS(SingletonMixin, SettingsEOS):
"""Singleton configuration handler for the EOS application.
ConfigEOS extends `SettingsEOS` with support for default configuration paths and automatic
@@ -224,6 +143,8 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
in one part of the application reflects across all references to this class.
Attributes:
_settings (ClassVar[SettingsEOS]): Holds application-wide settings.
_file_settings (ClassVar[SettingsEOS]): Stores configuration loaded from file.
config_folder_path (Optional[Path]): Path to the configuration directory.
config_file_path (Optional[Path]): Path to the configuration file.
@@ -234,7 +155,7 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
To initialize and access configuration attributes (only one instance is created):
```python
config_eos = ConfigEOS() # Always returns the same instance
print(config_eos.prediction.hours) # Access a setting from the loaded configuration
print(config_eos.prediction_hours) # Access a setting from the loaded configuration
```
"""
@@ -246,111 +167,111 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
ENCODING: ClassVar[str] = "UTF-8"
CONFIG_FILE_NAME: ClassVar[str] = "EOS.config.json"
@classmethod
def settings_customise_sources(
cls,
settings_cls: Type[BaseSettings],
init_settings: PydanticBaseSettingsSource,
env_settings: PydanticBaseSettingsSource,
dotenv_settings: PydanticBaseSettingsSource,
file_secret_settings: PydanticBaseSettingsSource,
) -> tuple[PydanticBaseSettingsSource, ...]:
"""Customizes the order and handling of settings sources for a Pydantic BaseSettings subclass.
_settings: ClassVar[Optional[SettingsEOS]] = None
_file_settings: ClassVar[Optional[SettingsEOS]] = None
This method determines the sources for application configuration settings, including
environment variables, dotenv files and JSON configuration files.
It ensures that a default configuration file exists and creates one if necessary.
_config_folder_path: Optional[Path] = None
_config_file_path: Optional[Path] = None
Args:
settings_cls (Type[BaseSettings]): The Pydantic BaseSettings class for which sources are customized.
init_settings (PydanticBaseSettingsSource): The initial settings source, typically passed at runtime.
env_settings (PydanticBaseSettingsSource): Settings sourced from environment variables.
dotenv_settings (PydanticBaseSettingsSource): Settings sourced from a dotenv file.
file_secret_settings (PydanticBaseSettingsSource): Unused (needed for parent class interface).
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def config_folder_path(self) -> Optional[Path]:
"""Path to EOS configuration directory."""
return self._config_folder_path
Returns:
tuple[PydanticBaseSettingsSource, ...]: A tuple of settings sources in the order they should be applied.
@computed_field # type: ignore[prop-decorator]
@property
def config_file_path(self) -> Optional[Path]:
"""Path to EOS configuration file."""
return self._config_file_path
Behavior:
1. Checks for the existence of a JSON configuration file in the expected location.
2. If the configuration file does not exist, creates the directory (if needed) and attempts to copy a
default configuration file to the location. If the copy fails, uses the default configuration file directly.
3. Creates a `JsonConfigSettingsSource` for both the configuration file and the default configuration file.
4. Updates class attributes `GeneralSettings._config_folder_path` and
`GeneralSettings._config_file_path` to reflect the determined paths.
5. Returns a tuple containing all provided and newly created settings sources in the desired order.
Notes:
- This method logs a warning if the default configuration file cannot be copied.
- It ensures that a fallback to the default configuration file is always possible.
"""
file_settings: Optional[ConfigFileSourceMixin] = None
config_file, exists = cls._get_config_file_path()
config_dir = config_file.parent
if not exists:
config_dir.mkdir(parents=True, exist_ok=True)
try:
shutil.copy2(cls.config_default_file_path, config_file)
except Exception as exc:
logger.warning(f"Could not copy default config: {exc}. Using default config...")
config_file = cls.config_default_file_path
config_dir = config_file.parent
file_settings = JsonConfigSettingsSource(settings_cls, json_file=config_file)
default_settings = JsonConfigSettingsSource(
settings_cls, json_file=cls.config_default_file_path
)
GeneralSettings._config_folder_path = config_dir
GeneralSettings._config_file_path = config_file
return (
init_settings,
env_settings,
dotenv_settings,
file_settings,
default_settings,
)
@classproperty
def config_default_file_path(cls) -> Path:
@computed_field # type: ignore[prop-decorator]
@property
def config_default_file_path(self) -> Path:
"""Compute the default config file path."""
return cls.package_root_path.joinpath("data/default.config.json")
return self.package_root_path.joinpath("data/default.config.json")
@classproperty
def package_root_path(cls) -> Path:
@computed_field # type: ignore[prop-decorator]
@property
def package_root_path(self) -> Path:
"""Compute the package root path."""
return Path(__file__).parent.parent.resolve()
def __init__(self, *args: Any, **kwargs: Any) -> None:
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def config_keys(self) -> List[str]:
"""Returns the keys of all fields in the configuration."""
key_list = []
key_list.extend(list(self.model_fields.keys()))
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
return key_list
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def config_keys_read_only(self) -> List[str]:
"""Returns the keys of all read only fields in the configuration."""
key_list = []
key_list.extend(list(self.__pydantic_decorators__.computed_fields.keys()))
return key_list
def __init__(self) -> None:
"""Initializes the singleton ConfigEOS instance.
Configuration data is loaded from a configuration file or a default one is created if none
exists.
"""
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
self._create_initial_config_file()
self._update_data_folder_path()
super().__init__()
self.from_config_file()
self.update()
def _setup(self, *args: Any, **kwargs: Any) -> None:
"""Re-initialize global settings."""
SettingsEOSDefaults.__init__(self, *args, **kwargs)
self._create_initial_config_file()
self._update_data_folder_path()
@property
def settings(self) -> Optional[SettingsEOS]:
"""Returns global settings for EOS.
def merge_settings(self, settings: SettingsEOS) -> None:
Settings generally provide configuration for EOS and are typically set only once.
Returns:
SettingsEOS: The settings for EOS or None.
"""
return ConfigEOS._settings
@classmethod
def _merge_and_update_settings(cls, settings: SettingsEOS) -> None:
"""Merge new and available settings.
Args:
settings (SettingsEOS): The new settings to apply.
"""
for key in SettingsEOS.model_fields:
if value := getattr(settings, key, None):
setattr(cls._settings, key, value)
def merge_settings(self, settings: SettingsEOS, force: Optional[bool] = None) -> None:
"""Merges the provided settings into the global settings for EOS, with optional overwrite.
Args:
settings (SettingsEOS): The settings to apply globally.
force (Optional[bool]): If True, overwrites the existing settings completely.
If False, the new settings are merged to the existing ones with priority for
the new ones. Defaults to False.
Raises:
ValueError: If the `settings` is not a `SettingsEOS` instance.
ValueError: If settings are already set and `force` is not True or
if the `settings` is not a `SettingsEOS` instance.
"""
if not isinstance(settings, SettingsEOS):
raise ValueError(f"Settings must be an instance of SettingsEOS: '{settings}'.")
self.merge_settings_from_dict(settings.model_dump(exclude_none=True, exclude_unset=True))
if ConfigEOS._settings is None or force:
ConfigEOS._settings = settings
else:
self._merge_and_update_settings(settings)
# Update configuration after merging
self.update()
def merge_settings_from_dict(self, data: dict) -> None:
"""Merges the provided dictionary data into the current instance.
@@ -368,83 +289,141 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
Example:
>>> config = get_config()
>>> new_data = {"prediction": {"hours": 24}, "server": {"port": 8000}}
>>> new_data = {"prediction_hours": 24, "server_eos_port": 8000}
>>> config.merge_settings_from_dict(new_data)
"""
self._setup(**merge_models(self, data))
# Create new settings instance with reset optional fields and merged data
settings = SettingsEOS.from_dict(data)
self.merge_settings(settings)
def reset_settings(self) -> None:
"""Reset all changed settings to environment/config file defaults.
"""Reset all available settings.
This functions basically deletes the settings provided before.
"""
self._setup()
def _create_initial_config_file(self) -> None:
if self.general.config_file_path and not self.general.config_file_path.exists():
self.general.config_file_path.parent.mkdir(parents=True, exist_ok=True)
try:
with open(self.general.config_file_path, "w") as f:
f.write(self.model_dump_json(indent=4))
except Exception as e:
logger.error(
f"Could not write configuration file '{self.general.config_file_path}': {e}"
)
ConfigEOS._settings = None
def _update_data_folder_path(self) -> None:
"""Updates path to the data directory."""
# From Settings
if data_dir := self.general.data_folder_path:
if self.settings and (data_dir := self.settings.data_folder_path):
try:
data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir
self.data_folder_path = data_dir
return
except Exception as e:
logger.warning(f"Could not setup data dir: {e}")
except:
pass
# From EOS_DIR env
if env_dir := os.getenv(self.EOS_DIR):
env_dir = os.getenv(self.EOS_DIR)
if env_dir is not None:
try:
data_dir = Path(env_dir).resolve()
data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir
self.data_folder_path = data_dir
return
except Exception as e:
logger.warning(f"Could not setup data dir: {e}")
except:
pass
# From configuration file
if self._file_settings and (data_dir := self._file_settings.data_folder_path):
try:
data_dir.mkdir(parents=True, exist_ok=True)
self.data_folder_path = data_dir
return
except:
pass
# From platform specific default path
try:
data_dir = Path(user_data_dir(self.APP_NAME, self.APP_AUTHOR))
if data_dir is not None:
data_dir.mkdir(parents=True, exist_ok=True)
self.general.data_folder_path = data_dir
self.data_folder_path = data_dir
return
except Exception as e:
logger.warning(f"Could not setup data dir: {e}")
except:
pass
# Current working directory
data_dir = Path.cwd()
self.general.data_folder_path = data_dir
self.data_folder_path = data_dir
@classmethod
def _get_config_file_path(cls) -> tuple[Path, bool]:
def _get_config_file_path(self) -> tuple[Path, bool]:
"""Finds the a valid configuration file or returns the desired path for a new config file.
Returns:
tuple[Path, bool]: The path to the configuration directory and if there is already a config file there
"""
config_dirs = []
env_base_dir = os.getenv(cls.EOS_DIR)
env_config_dir = os.getenv(cls.EOS_CONFIG_DIR)
env_base_dir = os.getenv(self.EOS_DIR)
env_config_dir = os.getenv(self.EOS_CONFIG_DIR)
env_dir = get_absolute_path(env_base_dir, env_config_dir)
logger.debug(f"Environment config dir: '{env_dir}'")
logger.debug(f"Envionment config dir: '{env_dir}'")
if env_dir is not None:
config_dirs.append(env_dir.resolve())
config_dirs.append(Path(user_config_dir(cls.APP_NAME)))
config_dirs.append(Path(user_config_dir(self.APP_NAME)))
config_dirs.append(Path.cwd())
for cdir in config_dirs:
cfile = cdir.joinpath(cls.CONFIG_FILE_NAME)
cfile = cdir.joinpath(self.CONFIG_FILE_NAME)
if cfile.exists():
logger.debug(f"Found config file: '{cfile}'")
return cfile, True
return config_dirs[0].joinpath(cls.CONFIG_FILE_NAME), False
return config_dirs[0].joinpath(self.CONFIG_FILE_NAME), False
def settings_from_config_file(self) -> tuple[SettingsEOS, Path]:
"""Load settings from the configuration file.
If the config file does not exist, it will be created.
Returns:
tuple of settings and path
settings (SettingsEOS): The settings defined by the EOS configuration file.
path (pathlib.Path): The path of the configuration file.
Raises:
ValueError: If the configuration file is invalid or incomplete.
"""
config_file, exists = self._get_config_file_path()
config_dir = config_file.parent
# Create config directory and copy default config if file does not exist
if not exists:
config_dir.mkdir(parents=True, exist_ok=True)
try:
shutil.copy2(self.config_default_file_path, config_file)
except Exception as exc:
logger.warning(f"Could not copy default config: {exc}. Using default config...")
config_file = self.config_default_file_path
config_dir = config_file.parent
# Load and validate the configuration file
with config_file.open("r", encoding=self.ENCODING) as f_in:
try:
json_str = f_in.read()
settings = SettingsEOS.model_validate_json(json_str)
except ValidationError as exc:
raise ValueError(f"Configuration '{config_file}' is incomplete or not valid: {exc}")
return settings, config_file
def from_config_file(self) -> tuple[SettingsEOS, Path]:
"""Load the configuration file settings for EOS.
Returns:
tuple of settings and path
settings (SettingsEOS): The settings defined by the EOS configuration file.
path (pathlib.Path): The path of the configuration file.
Raises:
ValueError: If the configuration file is invalid or incomplete.
"""
# Load settings from config file
ConfigEOS._file_settings, config_file = self.settings_from_config_file()
# Update configuration in memory
self.update()
# Everything worked, remember the values
self._config_folder_path = config_file.parent
self._config_file_path = config_file
return ConfigEOS._file_settings, config_file
def to_config_file(self) -> None:
"""Saves the current configuration to the configuration file.
@@ -454,24 +433,77 @@ class ConfigEOS(SingletonMixin, SettingsEOSDefaults):
Raises:
ValueError: If the configuration file path is not specified or can not be written to.
"""
if not self.general.config_file_path:
if not self.config_file_path:
raise ValueError("Configuration file path unknown.")
with self.general.config_file_path.open("w", encoding=self.ENCODING) as f_out:
json_str = super().model_dump_json()
with self.config_file_path.open("w", encoding=self.ENCODING) as f_out:
try:
json_str = super().to_json()
# Write to file
f_out.write(json_str)
# Also remember as actual settings
ConfigEOS._file_settings = SettingsEOS.model_validate_json(json_str)
except ValidationError as exc:
raise ValueError(f"Could not update '{self.config_file_path}': {exc}")
def _config_value(self, key: str) -> Any:
"""Retrieves the configuration value for a specific key, following a priority order.
Values are fetched in the following order:
1. Settings.
2. Environment variables.
3. EOS configuration file.
4. Current configuration.
5. Field default constants.
Args:
key (str): The configuration key to retrieve.
Returns:
Any: The configuration value, or None if not found.
"""
# Settings
if ConfigEOS._settings:
if (value := getattr(self.settings, key, None)) is not None:
return value
# Environment variables
if (value := os.getenv(key)) is not None:
try:
return float(value)
except ValueError:
return value
# EOS configuration file.
if self._file_settings:
if (value := getattr(self._file_settings, key, None)) is not None:
return value
# Current configuration - key is valid as called by update().
if (value := getattr(self, key, None)) is not None:
return value
# Field default constants
if (value := ConfigEOS.model_fields[key].default) is not None:
return value
logger.debug(f"Value for configuration key '{key}' not found or is {value}")
return None
def update(self) -> None:
"""Updates all configuration fields.
This method updates all configuration fields using the following order for value retrieval:
1. Current settings.
1. Settings.
2. Environment variables.
3. EOS configuration file.
4. Field default constants.
4. Current configuration.
5. Field default constants.
The first non None value in priority order is taken.
"""
self._setup(**self.model_dump())
self._update_data_folder_path()
for key in self.model_fields:
setattr(self, key, self._config_value(key))
def get_config() -> ConfigEOS:

View File

@@ -4,6 +4,10 @@ from akkudoktoreos.core.pydantic import PydanticBaseModel
class SettingsBaseModel(PydanticBaseModel):
"""Base model class for all settings configurations."""
"""Base model class for all settings configurations.
Note:
Settings property names shall be disjunctive to all existing settings' property names.
"""
pass

View File

@@ -265,12 +265,6 @@ class SingletonMixin:
class MySingletonModel(SingletonMixin, PydanticBaseModel):
name: str
# implement __init__ to avoid re-initialization of parent class PydanticBaseModel:
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
instance1 = MySingletonModel(name="Instance 1")
instance2 = MySingletonModel(name="Instance 2")

View File

@@ -1110,7 +1110,7 @@ class DataProvider(SingletonMixin, DataSequence):
To be implemented by derived classes.
"""
raise NotImplementedError()
return self.provider_id() == self.config.abstract_provider
@abstractmethod
def _update_data(self, force_update: Optional[bool] = False) -> None:
@@ -1121,11 +1121,6 @@ class DataProvider(SingletonMixin, DataSequence):
"""
pass
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def update_data(
self,
force_enable: Optional[bool] = False,
@@ -1600,11 +1595,6 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
)
return list(key_set)
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def __getitem__(self, key: str) -> pd.Series:
"""Retrieve a Pandas Series for a specified key from the data in each DataProvider.

View File

@@ -1,48 +0,0 @@
from collections.abc import Callable
from typing import Any, Optional
from akkudoktoreos.core.logging import get_logger
logger = get_logger(__name__)
class classproperty:
"""A decorator to define a read-only property at the class level.
This class replaces the built-in `property` which is no longer available in
combination with @classmethod since Python 3.13 to allow a method to be
accessed as a property on the class itself, rather than an instance. This
is useful when you want a property-like syntax for methods that depend on
the class rather than any instance of the class.
Example:
class MyClass:
_value = 42
@classmethod
@classproperty
def value(cls):
return cls._value
print(MyClass.value) # Outputs: 42
Methods:
__get__: Retrieves the value of the class property by calling the
decorated method on the class.
Parameters:
fget (Callable[[Any], Any]): A method that takes the class as an
argument and returns a value.
Raises:
AssertionError: If `fget` is not defined when `__get__` is called.
"""
def __init__(self, fget: Callable[[Any], Any]) -> None:
self.fget = fget
def __get__(self, _: Any, owner_cls: Optional[type[Any]] = None) -> Any:
if owner_cls is None:
return self
assert self.fget is not None
return self.fget(owner_cls)

View File

@@ -169,11 +169,6 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def set_parameters(
self,
parameters: EnergieManagementSystemParameters,
@@ -198,9 +193,9 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
self.ev = ev
self.home_appliance = home_appliance
self.inverter = inverter
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0)
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0)
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0)
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
if self.battery:
@@ -251,11 +246,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
error_msg = "Start datetime unknown."
logger.error(error_msg)
raise ValueError(error_msg)
if self.config.prediction.hours is None:
if self.config.prediction_hours is None:
error_msg = "Prediction hours unknown."
logger.error(error_msg)
raise ValueError(error_msg)
if self.config.prediction.optimisation_hours is None:
if self.config.optimisation_hours is None:
error_msg = "Optimisation hours unknown."
logger.error(error_msg)
raise ValueError(error_msg)

View File

@@ -4,6 +4,7 @@ Kept in an extra module to avoid cyclic dependencies on package import.
"""
import logging
import os
from typing import Optional
from pydantic import Field, computed_field, field_validator
@@ -13,20 +14,21 @@ from akkudoktoreos.core.logabc import logging_str_to_level
class LoggingCommonSettings(SettingsBaseModel):
"""Logging Configuration."""
"""Common settings for logging."""
level: Optional[str] = Field(
default=None,
description="EOS default logging level.",
examples=["INFO", "DEBUG", "WARNING", "ERROR", "CRITICAL"],
logging_level_default: Optional[str] = Field(
default=None, description="EOS default logging level."
)
# Validators
@field_validator("level", mode="after")
@field_validator("logging_level_default", mode="after")
@classmethod
def set_default_logging_level(cls, value: Optional[str]) -> Optional[str]:
if isinstance(value, str) and value.upper() == "NONE":
value = None
if value is None and (env_level := os.getenv("EOS_LOGGING_LEVEL")) is not None:
# Take default logging level from special environment variable
value = env_level
if value is None:
return None
level = logging_str_to_level(value)
@@ -36,7 +38,7 @@ class LoggingCommonSettings(SettingsBaseModel):
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def root_level(self) -> str:
def logging_level_root(self) -> str:
"""Root logger logging level."""
level = logging.getLogger().getEffectiveLevel()
level_name = logging.getLevelName(level)

View File

@@ -14,7 +14,6 @@ Key Features:
import json
import re
from copy import deepcopy
from typing import Any, Dict, List, Optional, Type, Union
from zoneinfo import ZoneInfo
@@ -36,21 +35,6 @@ from pydantic import (
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, Any]:
def deep_update(source_dict: dict[str, Any], update_dict: dict[str, Any]) -> dict[str, Any]:
for key, value in source_dict.items():
if isinstance(value, dict) and isinstance(update_dict.get(key), dict):
update_dict[key] = deep_update(update_dict[key], value)
else:
update_dict[key] = value
return update_dict
source_dict = source.model_dump(exclude_unset=True)
merged_dict = deep_update(source_dict, deepcopy(update_dict))
return merged_dict
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
"""Custom type adapter for Pendulum DateTime fields."""
@@ -129,16 +113,9 @@ class PydanticBaseModel(BaseModel):
return value
# Override Pydantics serialization for all DateTime fields
def model_dump(
self, *args: Any, include_computed_fields: bool = True, **kwargs: Any
) -> dict[str, Any]:
def model_dump(self, *args: Any, **kwargs: Any) -> dict:
"""Custom dump method to handle serialization for DateTime fields."""
result = super().model_dump(*args, **kwargs)
if not include_computed_fields:
for computed_field_name in self.model_computed_fields:
result.pop(computed_field_name, None)
for key, value in result.items():
if isinstance(value, pendulum.DateTime):
result[key] = PydanticTypeAdapterDateTime.serialize(value)
@@ -193,10 +170,6 @@ class PydanticBaseModel(BaseModel):
"""
return cls.model_validate(data)
def model_dump_json(self, *args: Any, indent: Optional[int] = None, **kwargs: Any) -> str:
data = self.model_dump(*args, **kwargs)
return json.dumps(data, indent=indent, default=str)
def to_json(self) -> str:
"""Convert the PydanticBaseModel instance to a JSON string.

View File

@@ -1,2 +1,113 @@
{
"config_file_path": null,
"config_folder_path": null,
"data_cache_path": null,
"data_cache_subpath": null,
"data_folder_path": null,
"data_output_path": null,
"data_output_subpath": null,
"elecprice_charges_kwh": 0.21,
"elecprice_provider": null,
"elecpriceimport_file_path": null,
"latitude": 52.5,
"load_import_file_path": null,
"load_name": null,
"load_provider": null,
"loadakkudoktor_year_energy": null,
"logging_level": "INFO",
"longitude": 13.4,
"optimization_ev_available_charge_rates_percent": null,
"optimization_hours": 48,
"optimization_penalty": null,
"prediction_historic_hours": 48,
"prediction_hours": 48,
"pvforecast0_albedo": null,
"pvforecast0_inverter_model": null,
"pvforecast0_inverter_paco": null,
"pvforecast0_loss": null,
"pvforecast0_module_model": null,
"pvforecast0_modules_per_string": null,
"pvforecast0_mountingplace": "free",
"pvforecast0_optimal_surface_tilt": false,
"pvforecast0_optimalangles": false,
"pvforecast0_peakpower": null,
"pvforecast0_pvtechchoice": "crystSi",
"pvforecast0_strings_per_inverter": null,
"pvforecast0_surface_azimuth": 180,
"pvforecast0_surface_tilt": 0,
"pvforecast0_trackingtype": 0,
"pvforecast0_userhorizon": null,
"pvforecast1_albedo": null,
"pvforecast1_inverter_model": null,
"pvforecast1_inverter_paco": null,
"pvforecast1_loss": 0,
"pvforecast1_module_model": null,
"pvforecast1_modules_per_string": null,
"pvforecast1_mountingplace": "free",
"pvforecast1_optimal_surface_tilt": false,
"pvforecast1_optimalangles": false,
"pvforecast1_peakpower": null,
"pvforecast1_pvtechchoice": "crystSi",
"pvforecast1_strings_per_inverter": null,
"pvforecast1_surface_azimuth": 180,
"pvforecast1_surface_tilt": 0,
"pvforecast1_trackingtype": 0,
"pvforecast1_userhorizon": null,
"pvforecast2_albedo": null,
"pvforecast2_inverter_model": null,
"pvforecast2_inverter_paco": null,
"pvforecast2_loss": 0,
"pvforecast2_module_model": null,
"pvforecast2_modules_per_string": null,
"pvforecast2_mountingplace": "free",
"pvforecast2_optimal_surface_tilt": false,
"pvforecast2_optimalangles": false,
"pvforecast2_peakpower": null,
"pvforecast2_pvtechchoice": "crystSi",
"pvforecast2_strings_per_inverter": null,
"pvforecast2_surface_azimuth": 180,
"pvforecast2_surface_tilt": 0,
"pvforecast2_trackingtype": 0,
"pvforecast2_userhorizon": null,
"pvforecast3_albedo": null,
"pvforecast3_inverter_model": null,
"pvforecast3_inverter_paco": null,
"pvforecast3_loss": 0,
"pvforecast3_module_model": null,
"pvforecast3_modules_per_string": null,
"pvforecast3_mountingplace": "free",
"pvforecast3_optimal_surface_tilt": false,
"pvforecast3_optimalangles": false,
"pvforecast3_peakpower": null,
"pvforecast3_pvtechchoice": "crystSi",
"pvforecast3_strings_per_inverter": null,
"pvforecast3_surface_azimuth": 180,
"pvforecast3_surface_tilt": 0,
"pvforecast3_trackingtype": 0,
"pvforecast3_userhorizon": null,
"pvforecast4_albedo": null,
"pvforecast4_inverter_model": null,
"pvforecast4_inverter_paco": null,
"pvforecast4_loss": 0,
"pvforecast4_module_model": null,
"pvforecast4_modules_per_string": null,
"pvforecast4_mountingplace": "free",
"pvforecast4_optimal_surface_tilt": false,
"pvforecast4_optimalangles": false,
"pvforecast4_peakpower": null,
"pvforecast4_pvtechchoice": "crystSi",
"pvforecast4_strings_per_inverter": null,
"pvforecast4_surface_azimuth": 180,
"pvforecast4_surface_tilt": 0,
"pvforecast4_trackingtype": 0,
"pvforecast4_userhorizon": null,
"pvforecast_provider": null,
"pvforecastimport_file_path": null,
"server_eos_startup_eosdash": true,
"server_eos_host": "0.0.0.0",
"server_eos_port": 8503,
"server_eosdash_host": "0.0.0.0",
"server_eosdash_port": 8504,
"weather_provider": null,
"weatherimport_file_path": null
}

View File

@@ -1,14 +1,11 @@
from typing import Any, Optional
import numpy as np
from pydantic import Field, field_validator
from pydantic import BaseModel, Field, field_validator
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.devicesabc import (
DeviceBase,
DeviceOptimizeResult,
DeviceParameters,
)
from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.devicesabc import DeviceBase
from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
@@ -25,26 +22,14 @@ def max_charging_power_field(description: Optional[str] = None) -> float:
def initial_soc_percentage_field(description: str) -> int:
return Field(default=0, ge=0, le=100, description=description, examples=[42])
return Field(default=0, ge=0, le=100, description=description)
def discharging_efficiency_field(default_value: float) -> float:
return Field(
default=default_value,
gt=0,
le=1,
description="A float representing the discharge efficiency of the battery.",
)
class BaseBatteryParameters(ParametersBaseModel):
"""Base class for battery parameters with fields for capacity, efficiency, and state of charge."""
class BaseBatteryParameters(DeviceParameters):
"""Battery Device Simulation Configuration."""
device_id: str = Field(description="ID of battery", examples=["battery1"])
capacity_wh: int = Field(
gt=0,
description="An integer representing the capacity of the battery in watt-hours.",
examples=[8000],
gt=0, description="An integer representing the capacity of the battery in watt-hours."
)
charging_efficiency: float = Field(
default=0.88,
@@ -52,7 +37,12 @@ class BaseBatteryParameters(DeviceParameters):
le=1,
description="A float representing the charging efficiency of the battery.",
)
discharging_efficiency: float = discharging_efficiency_field(0.88)
discharging_efficiency: float = Field(
default=0.88,
gt=0,
le=1,
description="A float representing the discharge efficiency of the battery.",
)
max_charge_power_w: Optional[float] = max_charging_power_field()
initial_soc_percentage: int = initial_soc_percentage_field(
"An integer representing the state of charge of the battery at the **start** of the current hour (not the current state)."
@@ -62,7 +52,6 @@ class BaseBatteryParameters(DeviceParameters):
ge=0,
le=100,
description="An integer representing the minimum state of charge (SOC) of the battery in percentage.",
examples=[10],
)
max_soc_percentage: int = Field(
default=100,
@@ -77,19 +66,17 @@ class SolarPanelBatteryParameters(BaseBatteryParameters):
class ElectricVehicleParameters(BaseBatteryParameters):
"""Battery Electric Vehicle Device Simulation Configuration."""
"""Parameters specific to an electric vehicle (EV)."""
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
discharging_efficiency: float = discharging_efficiency_field(1.0)
discharging_efficiency: float = 1.0
initial_soc_percentage: int = initial_soc_percentage_field(
"An integer representing the current state of charge (SOC) of the battery in percentage."
)
class ElectricVehicleResult(DeviceOptimizeResult):
class ElectricVehicleResult(BaseModel):
"""Result class containing information related to the electric vehicle's charging and discharging behavior."""
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
charge_array: list[float] = Field(
description="Hourly charging status (0 for no charging, 1 for charging)."
)
@@ -97,6 +84,7 @@ class ElectricVehicleResult(DeviceOptimizeResult):
description="Hourly discharging status (0 for no discharging, 1 for discharging)."
)
discharging_efficiency: float = Field(description="The discharge efficiency as a float..")
hours: int = Field(description="Number of hours in the simulation.")
capacity_wh: int = Field(description="Capacity of the EVs battery in watt-hours.")
charging_efficiency: float = Field(description="Charging efficiency as a float..")
max_charge_power_w: int = Field(description="Maximum charging power in watts.")
@@ -115,18 +103,67 @@ class ElectricVehicleResult(DeviceOptimizeResult):
class Battery(DeviceBase):
"""Represents a battery device with methods to simulate energy charging and discharging."""
def __init__(self, parameters: Optional[BaseBatteryParameters] = None):
self.parameters: Optional[BaseBatteryParameters] = None
super().__init__(parameters)
def __init__(
self,
parameters: Optional[BaseBatteryParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
# Initialize configuration and parameters
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericBattery":
self.prefix = "battery"
elif self.provider_id == "GenericBEV":
self.prefix = "bev"
def _setup(self) -> None:
self.parameters = parameters
if hours is None:
self.hours = self.total_hours # TODO where does that come from?
else:
self.hours = hours
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
"""Sets up the battery parameters based on configuration or provided parameters."""
assert self.parameters is not None
if self.initialised:
return
if self.provider_id:
# Setup from configuration
self.capacity_wh = getattr(self.config, f"{self.prefix}_capacity")
self.initial_soc_percentage = getattr(self.config, f"{self.prefix}_initial_soc")
self.hours = self.total_hours # TODO where does that come from?
self.charging_efficiency = getattr(self.config, f"{self.prefix}_charging_efficiency")
self.discharging_efficiency = getattr(
self.config, f"{self.prefix}_discharging_efficiency"
)
self.max_charge_power_w = getattr(self.config, f"{self.prefix}_max_charging_power")
if self.provider_id == "GenericBattery":
self.min_soc_percentage = getattr(
self.config,
f"{self.prefix}_soc_min",
)
else:
self.min_soc_percentage = 0
self.max_soc_percentage = getattr(
self.config,
f"{self.prefix}_soc_max",
)
elif self.parameters:
# Setup from parameters
self.capacity_wh = self.parameters.capacity_wh
self.initial_soc_percentage = self.parameters.initial_soc_percentage
self.charging_efficiency = self.parameters.charging_efficiency
self.discharging_efficiency = self.parameters.discharging_efficiency
self.max_charge_power_w = self.parameters.max_charge_power_w
# Only assign for storage battery
self.min_soc_percentage = (
self.parameters.min_soc_percentage
@@ -134,11 +171,13 @@ class Battery(DeviceBase):
else 0
)
self.max_soc_percentage = self.parameters.max_soc_percentage
else:
error_msg = "Parameters and provider ID are missing. Cannot instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
# Initialize state of charge
if self.parameters.max_charge_power_w is not None:
self.max_charge_power_w = self.parameters.max_charge_power_w
else:
if self.max_charge_power_w is None:
self.max_charge_power_w = self.capacity_wh # TODO this should not be equal capacity_wh
self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1)
@@ -146,10 +185,11 @@ class Battery(DeviceBase):
self.min_soc_wh = (self.min_soc_percentage / 100) * self.capacity_wh
self.max_soc_wh = (self.max_soc_percentage / 100) * self.capacity_wh
self.initialised = True
def to_dict(self) -> dict[str, Any]:
"""Converts the object to a dictionary representation."""
return {
"device_id": self.device_id,
"capacity_wh": self.capacity_wh,
"initial_soc_percentage": self.initial_soc_percentage,
"soc_wh": self.soc_wh,

View File

@@ -1,42 +1,307 @@
from typing import Optional
from typing import Any, ClassVar, Dict, Optional, Union
import numpy as np
from numpydantic import NDArray, Shape
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.devicesabc import DevicesBase
from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Inverter
from akkudoktoreos.devices.settings import DevicesCommonSettings
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class DevicesCommonSettings(SettingsBaseModel):
"""Base configuration for devices simulation settings."""
# Battery
# -------
battery_provider: Optional[str] = Field(
default=None, description="Id of Battery simulation provider."
)
battery_capacity: Optional[int] = Field(default=None, description="Battery capacity [Wh].")
battery_initial_soc: Optional[int] = Field(
default=None, description="Battery initial state of charge [%]."
)
battery_soc_min: Optional[int] = Field(
default=None, description="Battery minimum state of charge [%]."
)
battery_soc_max: Optional[int] = Field(
default=None, description="Battery maximum state of charge [%]."
)
battery_charging_efficiency: Optional[float] = Field(
default=None, description="Battery charging efficiency [%]."
)
battery_discharging_efficiency: Optional[float] = Field(
default=None, description="Battery discharging efficiency [%]."
)
battery_max_charging_power: Optional[int] = Field(
default=None, description="Battery maximum charge power [W]."
)
# Battery Electric Vehicle
# ------------------------
bev_provider: Optional[str] = Field(
default=None, description="Id of Battery Electric Vehicle simulation provider."
)
bev_capacity: Optional[int] = Field(
default=None, description="Battery Electric Vehicle capacity [Wh]."
)
bev_initial_soc: Optional[int] = Field(
default=None, description="Battery Electric Vehicle initial state of charge [%]."
)
bev_soc_max: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum state of charge [%]."
)
bev_charging_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle charging efficiency [%]."
)
bev_discharging_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle discharging efficiency [%]."
)
bev_max_charging_power: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum charge power [W]."
)
# Home Appliance - Dish Washer
# ----------------------------
dishwasher_provider: Optional[str] = Field(
default=None, description="Id of Dish Washer simulation provider."
)
dishwasher_consumption: Optional[int] = Field(
default=None, description="Dish Washer energy consumption [Wh]."
)
dishwasher_duration: Optional[int] = Field(
default=None, description="Dish Washer usage duration [h]."
)
# PV Inverter
# -----------
inverter_provider: Optional[str] = Field(
default=None, description="Id of PV Inverter simulation provider."
)
inverter_power_max: Optional[float] = Field(
default=None, description="Inverter maximum power [W]."
)
class Devices(SingletonMixin, DevicesBase):
def __init__(self, settings: Optional[DevicesCommonSettings] = None):
if hasattr(self, "_initialized"):
return
super().__init__()
if settings is None:
settings = self.config.devices
if settings is None:
return
# Results of the devices simulation and
# insights into various parameters over the entire forecast period.
# -----------------------------------------------------------------
last_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The load in watt-hours per hour."
)
eauto_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The state of charge of the EV for each hour."
)
einnahmen_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The revenue from grid feed-in or other sources in euros per hour.",
)
home_appliance_wh_per_hour: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The energy consumption of a household appliance in watt-hours per hour.",
)
kosten_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The costs in euros per hour."
)
grid_import_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The grid energy drawn in watt-hours per hour."
)
grid_export_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The energy fed into the grid in watt-hours per hour."
)
verluste_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The losses in watt-hours per hour."
)
akku_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The state of charge of the battery (not the EV) in percentage per hour.",
)
# initialize devices
if settings.batteries is not None:
for battery_params in settings.batteries:
self.add_device(Battery(battery_params))
if settings.inverters is not None:
for inverter_params in settings.inverters:
self.add_device(Inverter(inverter_params))
if settings.home_appliances is not None:
for home_appliance_params in settings.home_appliances:
self.add_device(HomeAppliance(home_appliance_params))
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def total_balance_euro(self) -> float:
"""The total balance of revenues minus costs in euros."""
return self.total_revenues_euro - self.total_costs_euro
self.post_setup()
@computed_field # type: ignore[prop-decorator]
@property
def total_revenues_euro(self) -> float:
"""The total revenues in euros."""
if self.einnahmen_euro_pro_stunde is None:
return 0
return np.nansum(self.einnahmen_euro_pro_stunde)
def post_setup(self) -> None:
for device in self.devices.values():
device.post_setup()
@computed_field # type: ignore[prop-decorator]
@property
def total_costs_euro(self) -> float:
"""The total costs in euros."""
if self.kosten_euro_pro_stunde is None:
return 0
return np.nansum(self.kosten_euro_pro_stunde)
@computed_field # type: ignore[prop-decorator]
@property
def total_losses_wh(self) -> float:
"""The total losses in watt-hours over the entire period."""
if self.verluste_wh_pro_stunde is None:
return 0
return np.nansum(self.verluste_wh_pro_stunde)
# Devices
# TODO: Make devices class a container of device simulation providers.
# Device simulations to be used are then enabled in the configuration.
battery: ClassVar[Battery] = Battery(provider_id="GenericBattery")
ev: ClassVar[Battery] = Battery(provider_id="GenericBEV")
home_appliance: ClassVar[HomeAppliance] = HomeAppliance(provider_id="GenericDishWasher")
inverter: ClassVar[Inverter] = Inverter(
self_consumption_predictor=SelfConsumptionProbabilityInterpolator,
battery=battery,
provider_id="GenericInverter",
)
def update_data(self) -> None:
"""Update device simulation data."""
# Assure devices are set up
self.battery.setup()
self.ev.setup()
self.home_appliance.setup()
self.inverter.setup()
# Pre-allocate arrays for the results, optimized for speed
self.last_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.grid_export_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.grid_import_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.kosten_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.einnahmen_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.akku_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.eauto_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.verluste_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.home_appliance_wh_per_hour = np.full((self.total_hours), np.nan)
# Set initial state
simulation_step = to_duration("1 hour")
if self.battery:
self.akku_soc_pro_stunde[0] = self.battery.current_soc_percentage()
if self.ev:
self.eauto_soc_pro_stunde[0] = self.ev.current_soc_percentage()
# Get predictions for full device simulation time range
# gesamtlast[stunde]
load_total_mean = self.prediction.key_to_array(
"load_total_mean",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# pv_prognose_wh[stunde]
pvforecast_ac_power = self.prediction.key_to_array(
"pvforecast_ac_power",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# strompreis_euro_pro_wh[stunde]
elecprice_marketprice_wh = self.prediction.key_to_array(
"elecprice_marketprice_wh",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# einspeiseverguetung_euro_pro_wh_arr[stunde]
# TODO: Create prediction for einspeiseverguetung_euro_pro_wh_arr
einspeiseverguetung_euro_pro_wh_arr = np.full((self.total_hours), 0.078)
for stunde_since_now in range(0, self.total_hours):
hour = self.start_datetime.hour + stunde_since_now
# Accumulate loads and PV generation
consumption = load_total_mean[stunde_since_now]
self.verluste_wh_pro_stunde[stunde_since_now] = 0.0
# Home appliances
if self.home_appliance:
ha_load = self.home_appliance.get_load_for_hour(hour)
consumption += ha_load
self.home_appliance_wh_per_hour[stunde_since_now] = ha_load
# E-Auto handling
if self.ev:
if self.ev_charge_hours[hour] > 0:
geladene_menge_eauto, verluste_eauto = self.ev.charge_energy(
None, hour, relative_power=self.ev_charge_hours[hour]
)
consumption += geladene_menge_eauto
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
self.eauto_soc_pro_stunde[stunde_since_now] = self.ev.current_soc_percentage()
# Process inverter logic
grid_export, grid_import, losses, self_consumption = (0.0, 0.0, 0.0, 0.0)
if self.battery:
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
if self.inverter:
generation = pvforecast_ac_power[hour]
grid_export, grid_import, losses, self_consumption = self.inverter.process_energy(
generation, consumption, hour
)
# AC PV Battery Charge
if self.battery and self.ac_charge_hours[hour] > 0.0:
self.battery.set_charge_allowed_for_hour(1, hour)
geladene_menge, verluste_wh = self.battery.charge_energy(
None, hour, relative_power=self.ac_charge_hours[hour]
)
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.battery.current_soc_percentage())
consumption += geladene_menge
grid_import += geladene_menge
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
self.grid_export_wh_pro_stunde[stunde_since_now] = grid_export
self.grid_import_wh_pro_stunde[stunde_since_now] = grid_import
self.verluste_wh_pro_stunde[stunde_since_now] += losses
self.last_wh_pro_stunde[stunde_since_now] = consumption
# Financial calculations
self.kosten_euro_pro_stunde[stunde_since_now] = (
grid_import * self.strompreis_euro_pro_wh[hour]
)
self.einnahmen_euro_pro_stunde[stunde_since_now] = (
grid_export * self.einspeiseverguetung_euro_pro_wh_arr[hour]
)
# battery SOC tracking
if self.battery:
self.akku_soc_pro_stunde[stunde_since_now] = self.battery.current_soc_percentage()
else:
self.akku_soc_pro_stunde[stunde_since_now] = 0.0
def report_dict(self) -> Dict[str, Any]:
"""Provides devices simulation output as a dictionary."""
out: Dict[str, Optional[Union[np.ndarray, float]]] = {
"Last_Wh_pro_Stunde": self.last_wh_pro_stunde,
"grid_export_Wh_pro_Stunde": self.grid_export_wh_pro_stunde,
"grid_import_Wh_pro_Stunde": self.grid_import_wh_pro_stunde,
"Kosten_Euro_pro_Stunde": self.kosten_euro_pro_stunde,
"akku_soc_pro_stunde": self.akku_soc_pro_stunde,
"Einnahmen_Euro_pro_Stunde": self.einnahmen_euro_pro_stunde,
"Gesamtbilanz_Euro": self.total_balance_euro,
"EAuto_SoC_pro_Stunde": self.eauto_soc_pro_stunde,
"Gesamteinnahmen_Euro": self.total_revenues_euro,
"Gesamtkosten_Euro": self.total_costs_euro,
"Verluste_Pro_Stunde": self.verluste_wh_pro_stunde,
"Gesamt_Verluste": self.total_losses_wh,
"Home_appliance_wh_per_hour": self.home_appliance_wh_per_hour,
}
return out
# Initialize the Devices simulation, it is a singleton.

View File

@@ -1,45 +1,22 @@
"""Abstract and base classes for devices."""
from enum import Enum
from typing import Optional, Type
from typing import Optional
from pendulum import DateTime
from pydantic import Field, computed_field
from pydantic import ConfigDict, computed_field
from akkudoktoreos.core.coreabc import (
ConfigMixin,
DevicesMixin,
EnergyManagementSystemMixin,
PredictionMixin,
)
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.datetimeutil import to_duration
logger = get_logger(__name__)
class DeviceParameters(ParametersBaseModel):
device_id: str = Field(description="ID of device", examples="device1")
hours: Optional[int] = Field(
default=None,
gt=0,
description="Number of prediction hours. Defaults to global config prediction hours.",
examples=[None],
)
class DeviceOptimizeResult(ParametersBaseModel):
device_id: str = Field(description="ID of device", examples=["device1"])
hours: int = Field(gt=0, description="Number of hours in the simulation.", examples=[24])
class DeviceState(Enum):
UNINITIALIZED = 0
PREPARED = 1
INITIALIZED = 2
class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
"""A mixin to manage start, end datetimes for devices data.
@@ -51,16 +28,16 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
@computed_field # type: ignore[prop-decorator]
@property
def end_datetime(self) -> Optional[DateTime]:
"""Compute the end datetime based on the `start_datetime` and `hours`.
"""Compute the end datetime based on the `start_datetime` and `prediction_hours`.
Ajusts the calculated end time if DST transitions occur within the prediction window.
Returns:
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
"""
if self.ems.start_datetime and self.config.prediction.hours:
if self.ems.start_datetime and self.config.prediction_hours:
end_datetime = self.ems.start_datetime + to_duration(
f"{self.config.prediction.hours} hours"
f"{self.config.prediction_hours} hours"
)
dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours
logger.debug(
@@ -91,92 +68,33 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
return int(duration.total_hours())
class DeviceBase(DevicesStartEndMixin, PredictionMixin, DevicesMixin):
class DeviceBase(DevicesStartEndMixin, PredictionMixin):
"""Base class for device simulations.
Enables access to EOS configuration data (attribute `config`), EOS prediction data (attribute
`prediction`) and EOS device registry (attribute `devices`).
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`).
Behavior:
- Several initialization phases (setup, post_setup):
- setup: Initialize class attributes from DeviceParameters (pydantic input validation)
- post_setup: Set connections between devices
- NotImplemented:
- hooks during optimization
Notes:
- This class is base to concrete devices like battery, inverter, etc. that are used in optimization.
- Not a pydantic model for a low footprint during optimization.
Note:
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
"""
def __init__(self, parameters: Optional[DeviceParameters] = None):
self.device_id: str = "<invalid>"
self.parameters: Optional[DeviceParameters] = None
self.hours = -1
if self.total_hours is not None:
self.hours = self.total_hours
self.initialized = DeviceState.UNINITIALIZED
if parameters is not None:
self.setup(parameters)
def setup(self, parameters: DeviceParameters) -> None:
if self.initialized != DeviceState.UNINITIALIZED:
return
self.parameters = parameters
self.device_id = self.parameters.device_id
if self.parameters.hours is not None:
self.hours = self.parameters.hours
if self.hours < 0:
raise ValueError("hours is unset")
self._setup()
self.initialized = DeviceState.PREPARED
def post_setup(self) -> None:
if self.initialized.value >= DeviceState.INITIALIZED.value:
return
self._post_setup()
self.initialized = DeviceState.INITIALIZED
def _setup(self) -> None:
"""Implement custom setup in derived device classes."""
pass
def _post_setup(self) -> None:
"""Implement custom setup in derived device classes that is run when all devices are initialized."""
pass
# Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict(
validate_assignment=False,
)
class DevicesBase(DevicesStartEndMixin, PredictionMixin):
class DevicesBase(DevicesStartEndMixin, PredictionMixin, PydanticBaseModel):
"""Base class for handling device data.
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`).
Note:
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
"""
def __init__(self) -> None:
super().__init__()
self.devices: dict[str, "DeviceBase"] = dict()
def get_device_by_id(self, device_id: str) -> Optional["DeviceBase"]:
return self.devices.get(device_id)
def add_device(self, device: Optional["DeviceBase"]) -> None:
if device is None:
return
assert device.device_id not in self.devices, f"{device.device_id} already registered"
self.devices[device.device_id] = device
def remove_device(self, device: Type["DeviceBase"] | str) -> bool:
if isinstance(device, DeviceBase):
device = device.device_id
return self.devices.pop(device, None) is not None # type: ignore[arg-type]
def reset(self) -> None:
self.devices = dict()
# Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict(
validate_assignment=False,
)

View File

@@ -4,24 +4,20 @@ import numpy as np
from pydantic import Field
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters
from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.devicesabc import DeviceBase
logger = get_logger(__name__)
class HomeApplianceParameters(DeviceParameters):
"""Home Appliance Device Simulation Configuration."""
device_id: str = Field(description="ID of home appliance", examples=["dishwasher"])
class HomeApplianceParameters(ParametersBaseModel):
consumption_wh: int = Field(
gt=0,
description="An integer representing the energy consumption of a household device in watt-hours.",
examples=[2000],
)
duration_h: int = Field(
gt=0,
description="An integer representing the usage duration of a household device in hours.",
examples=[3],
)
@@ -29,15 +25,46 @@ class HomeAppliance(DeviceBase):
def __init__(
self,
parameters: Optional[HomeApplianceParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
self.parameters: Optional[HomeApplianceParameters] = None
super().__init__(parameters)
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericDishWasher":
self.prefix = "dishwasher"
# Parameter initialisiation
self.parameters = parameters
if hours is None:
self.hours = self.total_hours
else:
self.hours = hours
def _setup(self) -> None:
assert self.parameters is not None
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.hours = self.total_hours
self.consumption_wh = getattr(self.config, f"{self.prefix}_consumption")
self.duration_h = getattr(self.config, f"{self.prefix}_duration")
elif self.parameters is not None:
# Setup by parameters
self.consumption_wh = (
self.parameters.consumption_wh
) # Total energy consumption of the device in kWh
self.duration_h = self.parameters.duration_h # Duration of use in hours
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
self.load_curve = np.zeros(self.hours) # Initialize the load curve with zeros
self.duration_h = self.parameters.duration_h
self.consumption_wh = self.parameters.consumption_wh
self.initialised = True
def set_starting_time(self, start_hour: int, global_start_hour: int = 0) -> None:
"""Sets the start time of the device and generates the corresponding load curve.

View File

@@ -18,9 +18,9 @@ class Heatpump:
COP_COEFFICIENT = 0.1
"""COP increase per degree"""
def __init__(self, max_heat_output: int, hours: int):
def __init__(self, max_heat_output: int, prediction_hours: int):
self.max_heat_output = max_heat_output
self.hours = hours
self.prediction_hours = prediction_hours
self.log = logging.getLogger(__name__)
def __check_outside_temperature_range__(self, temp_celsius: float) -> bool:
@@ -117,9 +117,9 @@ class Heatpump:
"""Simulate power data for 24 hours based on provided temperatures."""
power_data: List[float] = []
if len(temperatures) != self.hours:
if len(temperatures) != self.prediction_hours:
raise ValueError(
f"The temperature array must contain exactly {self.hours} entries, "
f"The temperature array must contain exactly {self.prediction_hours} entries, "
"one for each hour of the day."
)

View File

@@ -1,48 +1,64 @@
from typing import Optional
from pydantic import Field
from scipy.interpolate import RegularGridInterpolator
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.devicesabc import DeviceBase, DeviceParameters
from akkudoktoreos.prediction.interpolator import get_eos_load_interpolator
from akkudoktoreos.core.pydantic import ParametersBaseModel
from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.devicesabc import DeviceBase
logger = get_logger(__name__)
class InverterParameters(DeviceParameters):
"""Inverter Device Simulation Configuration."""
device_id: str = Field(description="ID of inverter", examples=["inverter1"])
max_power_wh: float = Field(gt=0, examples=[10000])
battery_id: Optional[str] = Field(
default=None, description="ID of battery", examples=[None, "battery1"]
)
class InverterParameters(ParametersBaseModel):
max_power_wh: float = Field(gt=0)
class Inverter(DeviceBase):
def __init__(
self,
self_consumption_predictor: RegularGridInterpolator,
parameters: Optional[InverterParameters] = None,
battery: Optional[Battery] = None,
provider_id: Optional[str] = None,
):
self.parameters: Optional[InverterParameters] = None
super().__init__(parameters)
def _setup(self) -> None:
assert self.parameters is not None
if self.parameters.battery_id is None:
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericInverter":
self.prefix = "inverter"
# Parameter initialisiation
self.parameters = parameters
if battery is None:
# For the moment raise exception
# TODO: Make battery configurable by config
error_msg = "Battery for PV inverter is mandatory."
logger.error(error_msg)
raise NotImplementedError(error_msg)
self.self_consumption_predictor = get_eos_load_interpolator()
self.max_power_wh = (
self.parameters.max_power_wh
) # Maximum power that the inverter can handle
self.battery = battery # Connection to a battery object
self.self_consumption_predictor = self_consumption_predictor
def _post_setup(self) -> None:
assert self.parameters is not None
self.battery = self.devices.get_device_by_id(self.parameters.battery_id)
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.max_power_wh = getattr(self.config, f"{self.prefix}_power_max")
elif self.parameters is not None:
# Setup by parameters
self.max_power_wh = (
self.parameters.max_power_wh # Maximum power that the inverter can handle
)
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
def process_energy(
self, generation: float, consumption: float, hour: int

View File

@@ -1,27 +0,0 @@
from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.devices.battery import BaseBatteryParameters
from akkudoktoreos.devices.generic import HomeApplianceParameters
from akkudoktoreos.devices.inverter import InverterParameters
logger = get_logger(__name__)
class DevicesCommonSettings(SettingsBaseModel):
"""Base configuration for devices simulation settings."""
batteries: Optional[list[BaseBatteryParameters]] = Field(
default=None,
description="List of battery/ev devices",
examples=[[{"device_id": "battery1", "capacity_wh": 8000}]],
)
inverters: Optional[list[InverterParameters]] = Field(
default=None, description="List of inverters", examples=[[]]
)
home_appliances: Optional[list[HomeApplianceParameters]] = Field(
default=None, description="List of home appliances", examples=[[]]
)

View File

@@ -23,22 +23,20 @@ logger = get_logger(__name__)
class MeasurementCommonSettings(SettingsBaseModel):
"""Measurement Configuration."""
load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source", examples=["Household", "Heat Pump"]
measurement_load0_name: Optional[str] = Field(
default=None, description="Name of the load0 source (e.g. 'Household', 'Heat Pump')"
)
load1_name: Optional[str] = Field(
default=None, description="Name of the load1 source", examples=[None]
measurement_load1_name: Optional[str] = Field(
default=None, description="Name of the load1 source (e.g. 'Household', 'Heat Pump')"
)
load2_name: Optional[str] = Field(
default=None, description="Name of the load2 source", examples=[None]
measurement_load2_name: Optional[str] = Field(
default=None, description="Name of the load2 source (e.g. 'Household', 'Heat Pump')"
)
load3_name: Optional[str] = Field(
default=None, description="Name of the load3 source", examples=[None]
measurement_load3_name: Optional[str] = Field(
default=None, description="Name of the load3 source (e.g. 'Household', 'Heat Pump')"
)
load4_name: Optional[str] = Field(
default=None, description="Name of the load4 source", examples=[None]
measurement_load4_name: Optional[str] = Field(
default=None, description="Name of the load4 source (e.g. 'Household', 'Heat Pump')"
)
@@ -50,42 +48,42 @@ class MeasurementDataRecord(DataRecord):
"""
# Single loads, to be aggregated to total load
load0_mr: Optional[float] = Field(
default=None, ge=0, description="Load0 meter reading [kWh]", examples=[40421]
measurement_load0_mr: Optional[float] = Field(
default=None, ge=0, description="Load0 meter reading [kWh]"
)
load1_mr: Optional[float] = Field(
default=None, ge=0, description="Load1 meter reading [kWh]", examples=[None]
measurement_load1_mr: Optional[float] = Field(
default=None, ge=0, description="Load1 meter reading [kWh]"
)
load2_mr: Optional[float] = Field(
default=None, ge=0, description="Load2 meter reading [kWh]", examples=[None]
measurement_load2_mr: Optional[float] = Field(
default=None, ge=0, description="Load2 meter reading [kWh]"
)
load3_mr: Optional[float] = Field(
default=None, ge=0, description="Load3 meter reading [kWh]", examples=[None]
measurement_load3_mr: Optional[float] = Field(
default=None, ge=0, description="Load3 meter reading [kWh]"
)
load4_mr: Optional[float] = Field(
default=None, ge=0, description="Load4 meter reading [kWh]", examples=[None]
measurement_load4_mr: Optional[float] = Field(
default=None, ge=0, description="Load4 meter reading [kWh]"
)
max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
measurement_max_loads: ClassVar[int] = 5 # Maximum number of loads that can be set
grid_export_mr: Optional[float] = Field(
default=None, ge=0, description="Export to grid meter reading [kWh]", examples=[1000]
measurement_grid_export_mr: Optional[float] = Field(
default=None, ge=0, description="Export to grid meter reading [kWh]"
)
grid_import_mr: Optional[float] = Field(
default=None, ge=0, description="Import from grid meter reading [kWh]", examples=[1000]
measurement_grid_import_mr: Optional[float] = Field(
default=None, ge=0, description="Import from grid meter reading [kWh]"
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def loads(self) -> List[str]:
def measurement_loads(self) -> List[str]:
"""Compute a list of active loads."""
active_loads = []
# Loop through loadx
for i in range(self.max_loads):
load_attr = f"load{i}_mr"
# Loop through measurement_loadx
for i in range(self.measurement_max_loads):
load_attr = f"measurement_load{i}_mr"
# Check if either attribute is set and add to active loads
if getattr(self, load_attr, None):
@@ -105,14 +103,9 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
)
topics: ClassVar[List[str]] = [
"load",
"measurement_load",
]
def __init__(self, *args: Any, **kwargs: Any) -> None:
if hasattr(self, "_initialized"):
return
super().__init__(*args, **kwargs)
def _interval_count(
self, start_datetime: DateTime, end_datetime: DateTime, interval: Duration
) -> int:
@@ -150,16 +143,11 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
if topic not in self.topics:
return None
topic_keys = [
key for key in self.config.measurement.model_fields.keys() if key.startswith(topic)
]
topic_keys = [key for key in self.config.config_keys if key.startswith(topic)]
key = None
if topic == "load":
if topic == "measurement_load":
for config_key in topic_keys:
if (
config_key.endswith("_name")
and getattr(self.config.measurement, config_key) == name
):
if config_key.endswith("_name") and getattr(self.config, config_key) == name:
key = topic + config_key[len(topic) : len(topic) + 1] + "_mr"
break
@@ -255,9 +243,9 @@ class Measurement(SingletonMixin, DataImportMixin, DataSequence):
end_datetime = self[-1].date_time
size = self._interval_count(start_datetime, end_datetime, interval)
load_total_array = np.zeros(size)
# Loop through load<x>_mr
for i in range(self.record_class().max_loads):
key = f"load{i}_mr"
# Loop through measurement_load<x>_mr
for i in range(self.record_class().measurement_max_loads):
key = f"measurement_load{i}_mr"
# Calculate load per interval
load_array = self._energy_from_meter_readings(
key=key, start_datetime=start_datetime, end_datetime=end_datetime, interval=interval

View File

@@ -1,6 +1,7 @@
import logging
import random
import time
from pathlib import Path
from typing import Any, Optional
import numpy as np
@@ -24,6 +25,7 @@ from akkudoktoreos.devices.battery import (
)
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Inverter, InverterParameters
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
@@ -110,8 +112,8 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
):
"""Initialize the optimization problem with the required parameters."""
self.opti_param: dict[str, Any] = {}
self.fixed_eauto_hours = self.config.prediction.hours - self.config.optimization.hours
self.possible_charge_values = self.config.optimization.ev_available_charge_rates_percent
self.fixed_eauto_hours = self.config.prediction_hours - self.config.optimization_hours
self.possible_charge_values = self.config.optimization_ev_available_charge_rates_percent
self.verbose = verbose
self.fix_seed = fixed_seed
self.optimize_ev = True
@@ -178,23 +180,23 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
total_states = 3 * len_ac
# 1. Mutating the charge_discharge part
charge_discharge_part = individual[: self.config.prediction.hours]
charge_discharge_part = individual[: self.config.prediction_hours]
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
# Instead of a fixed clamping to 0..8 or 0..6 dynamically:
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1)
individual[: self.config.prediction.hours] = charge_discharge_mutated
individual[: self.config.prediction_hours] = charge_discharge_mutated
# 2. Mutating the EV charge part, if active
if self.optimize_ev:
ev_charge_part = individual[
self.config.prediction.hours : self.config.prediction.hours * 2
self.config.prediction_hours : self.config.prediction_hours * 2
]
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
ev_charge_part_mutated[self.config.prediction.hours - self.fixed_eauto_hours :] = [
ev_charge_part_mutated[self.config.prediction_hours - self.fixed_eauto_hours :] = [
0
] * self.fixed_eauto_hours
individual[self.config.prediction.hours : self.config.prediction.hours * 2] = (
individual[self.config.prediction_hours : self.config.prediction_hours * 2] = (
ev_charge_part_mutated
)
@@ -210,13 +212,13 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
def create_individual(self) -> list[int]:
# Start with discharge states for the individual
individual_components = [
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction.hours)
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction_hours)
]
# Add EV charge index values if optimize_ev is True
if self.optimize_ev:
individual_components += [
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction.hours)
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction_hours)
]
# Add the start time of the household appliance if it's being optimized
@@ -249,7 +251,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
individual.extend(eautocharge_hours_index.tolist())
elif self.optimize_ev:
# Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu
individual.extend([0] * self.config.prediction.hours)
individual.extend([0] * self.config.prediction_hours)
# Add dishwasher start time if applicable
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None:
@@ -271,13 +273,12 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
3. Dishwasher start time (integer if applicable).
"""
# Discharge hours as a NumPy array of ints
discharge_hours_bin = np.array(individual[: self.config.prediction.hours], dtype=int)
discharge_hours_bin = np.array(individual[: self.config.prediction_hours], dtype=int)
# EV charge hours as a NumPy array of ints (if optimize_ev is True)
eautocharge_hours_index = (
# append ev charging states to individual
np.array(
individual[self.config.prediction.hours : self.config.prediction.hours * 2],
individual[self.config.prediction_hours : self.config.prediction_hours * 2],
dtype=int,
)
if self.optimize_ev
@@ -389,7 +390,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
)
self.ems.set_ev_charge_hours(eautocharge_hours_float)
else:
self.ems.set_ev_charge_hours(np.full(self.config.prediction.hours, 0))
self.ems.set_ev_charge_hours(np.full(self.config.prediction_hours, 0))
return self.ems.simulate(self.ems.start_datetime.hour)
@@ -451,7 +452,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
# min_length = min(battery_soc_per_hour.size, discharge_hours_bin.size)
# battery_soc_per_hour_tail = battery_soc_per_hour[-min_length:]
# discharge_hours_bin_tail = discharge_hours_bin[-min_length:]
# len_ac = len(self.config.optimization.ev_available_charge_rates_percent)
# len_ac = len(self.config.optimization_ev_available_charge_rates_percent)
# # # Find hours where battery SoC is 0
# # zero_soc_mask = battery_soc_per_hour_tail == 0
@@ -500,7 +501,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
if parameters.eauto and self.ems.ev
else 0
)
* self.config.optimization.penalty,
* self.config.optimization_penalty,
)
return (gesamtbilanz,)
@@ -568,26 +569,30 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
start_hour = self.ems.start_datetime.hour
einspeiseverguetung_euro_pro_wh = np.full(
self.config.prediction.hours, parameters.ems.einspeiseverguetung_euro_pro_wh
self.config.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
)
# TODO: Refactor device setup phase out
self.devices.reset()
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
sc = SelfConsumptionProbabilityInterpolator(
Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
)
# Initialize PV and EV batteries
akku: Optional[Battery] = None
if parameters.pv_akku:
akku = Battery(parameters.pv_akku)
self.devices.add_device(akku)
akku.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
akku = Battery(
parameters.pv_akku,
hours=self.config.prediction_hours,
)
akku.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
eauto: Optional[Battery] = None
if parameters.eauto:
eauto = Battery(
parameters.eauto,
hours=self.config.prediction_hours,
)
self.devices.add_device(eauto)
eauto.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
eauto.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
self.optimize_ev = (
parameters.eauto.min_soc_percentage - parameters.eauto.initial_soc_percentage >= 0
)
@@ -598,22 +603,20 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
dishwasher = (
HomeAppliance(
parameters=parameters.dishwasher,
hours=self.config.prediction_hours,
)
if parameters.dishwasher is not None
else None
)
self.devices.add_device(dishwasher)
# Initialize the inverter and energy management system
inverter: Optional[Inverter] = None
if parameters.inverter:
inverter = Inverter(
sc,
parameters.inverter,
akku,
)
self.devices.add_device(inverter)
self.devices.post_setup()
self.ems.set_parameters(
parameters.ems,
inverter=inverter,

View File

@@ -9,19 +9,21 @@ logger = get_logger(__name__)
class OptimizationCommonSettings(SettingsBaseModel):
"""General Optimization Configuration.
"""Base configuration for optimization settings.
Attributes:
hours (int): Number of hours for optimizations.
optimization_hours (int): Number of hours for optimizations.
"""
hours: Optional[int] = Field(
default=48, ge=0, description="Number of hours into the future for optimizations."
optimization_hours: Optional[int] = Field(
default=24, ge=0, description="Number of hours into the future for optimizations."
)
penalty: Optional[int] = Field(default=10, description="Penalty factor used in optimization.")
optimization_penalty: Optional[int] = Field(
default=10, description="Penalty factor used in optimization."
)
ev_available_charge_rates_percent: Optional[List[float]] = Field(
optimization_ev_available_charge_rates_percent: Optional[List[float]] = Field(
default=[
0.0,
6.0 / 16.0,

View File

@@ -3,21 +3,12 @@ from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.elecpriceimport import ElecPriceImportCommonSettings
class ElecPriceCommonSettings(SettingsBaseModel):
"""Electricity Price Prediction Configuration."""
provider: Optional[str] = Field(
default=None,
description="Electricity price provider id of provider to be used.",
examples=["ElecPriceAkkudoktor"],
elecprice_provider: Optional[str] = Field(
default=None, description="Electricity price provider id of provider to be used."
)
charges_kwh: Optional[float] = Field(
default=None, ge=0, description="Electricity price charges (€/kWh).", examples=[0.21]
)
provider_settings: Optional[ElecPriceImportCommonSettings] = Field(
default=None, description="Provider settings", examples=[None]
elecprice_charges_kwh: Optional[float] = Field(
default=None, ge=0, description="Electricity price charges (€/kWh)."
)

View File

@@ -49,15 +49,15 @@ class ElecPriceProvider(PredictionProvider):
electricity price_provider (str): Prediction provider for electricity price.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`.
calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`.
based on `start_datetime` and `prediction_historic_hours`.
"""
# overload
@@ -71,4 +71,4 @@ class ElecPriceProvider(PredictionProvider):
return "ElecPriceProvider"
def enabled(self) -> bool:
return self.provider_id() == self.config.elecprice.provider
return self.provider_id() == self.config.elecprice_provider

View File

@@ -54,11 +54,11 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
of hours into the future and retains historical data.
Attributes:
hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data.
prediction_hours (int, optional): Number of hours in the future for the forecast.
prediction_historic_hours (int, optional): Number of past hours for retaining data.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
@@ -108,13 +108,13 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
# Try to take data from 5 weeks back for prediction
date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD")
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.general.timezone}"
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.timezone}"
response = requests.get(url)
logger.debug(f"Response from {url}: {response}")
response.raise_for_status() # Raise an error for bad responses
akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return akkudoktor_data
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
@@ -125,16 +125,18 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
capped_data = data.clip(min=lower_bound, max=upper_bound)
return capped_data
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray:
def _predict_ets(
self, history: np.ndarray, seasonal_periods: int, prediction_hours: int
) -> np.ndarray:
clean_history = self._cap_outliers(history)
model = ExponentialSmoothing(
clean_history, seasonal="add", seasonal_periods=seasonal_periods
).fit()
return model.forecast(hours)
return model.forecast(prediction_hours)
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray:
def _predict_median(self, history: np.ndarray, prediction_hours: int) -> np.ndarray:
clean_history = self._cap_outliers(history)
return np.full(hours, np.median(clean_history))
return np.full(prediction_hours, np.median(clean_history))
def _update_data(
self, force_update: Optional[bool] = False
@@ -153,14 +155,14 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
# Get charges_kwh in wh
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000
# Get elecprice_charges_kwh in wh
charges_wh = (self.config.elecprice_charges_kwh or 0) / 1000
highest_orig_datetime = None # newest datetime from the api after that we want to update.
series_data = pd.Series(dtype=float) # Initialize an empty series
for value in akkudoktor_data.values:
orig_datetime = to_datetime(value.start, in_timezone=self.config.general.timezone)
orig_datetime = to_datetime(value.start, in_timezone=self.config.timezone)
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
highest_orig_datetime = orig_datetime
@@ -181,23 +183,27 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
assert highest_orig_datetime # mypy fix
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
needed_hours = int(
self.config.prediction.hours
needed_prediction_hours = int(
self.config.prediction_hours
- ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
)
if needed_hours <= 0:
if needed_prediction_hours <= 0:
logger.warning(
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records
f"No prediction needed. needed_prediction_hours={needed_prediction_hours}, prediction_hours={self.config.prediction_hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
) # this might keep data longer than self.start_datetime + self.config.prediction_hours in the records
return
if amount_datasets > 800: # we do the full ets with seasons of 1 week
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours)
prediction = self._predict_ets(
history, seasonal_periods=168, prediction_hours=needed_prediction_hours
)
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours)
prediction = self._predict_ets(
history, seasonal_periods=24, prediction_hours=needed_prediction_hours
)
elif amount_datasets > 0: # not enough data for ets, do median
prediction = self._predict_median(history, hours=needed_hours)
prediction = self._predict_median(history, prediction_hours=needed_prediction_hours)
else:
logger.error("No data available for prediction")
raise ValueError("No data available")

View File

@@ -22,22 +22,21 @@ logger = get_logger(__name__)
class ElecPriceImportCommonSettings(SettingsBaseModel):
"""Common settings for elecprice data import from file or JSON String."""
import_file_path: Optional[Union[str, Path]] = Field(
default=None,
description="Path to the file to import elecprice data from.",
examples=[None, "/path/to/prices.json"],
elecpriceimport_file_path: Optional[Union[str, Path]] = Field(
default=None, description="Path to the file to import elecprice data from."
)
import_json: Optional[str] = Field(
elecpriceimport_json: Optional[str] = Field(
default=None,
description="JSON string, dictionary of electricity price forecast value lists.",
examples=['{"elecprice_marketprice_wh": [0.0003384, 0.0003318, 0.0003284]}'],
)
# Validators
@field_validator("import_file_path", mode="after")
@field_validator("elecpriceimport_file_path", mode="after")
@classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
def validate_elecpriceimport_file_path(
cls, value: Optional[Union[str, Path]]
) -> Optional[Path]:
if value is None:
return None
if isinstance(value, str):
@@ -63,12 +62,7 @@ class ElecPriceImport(ElecPriceProvider, PredictionImportProvider):
return "ElecPriceImport"
def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.elecprice.provider_settings.import_file_path:
self.import_from_file(
self.config.elecprice.provider_settings.import_file_path,
key_prefix="elecprice",
)
if self.config.elecprice.provider_settings.import_json:
self.import_from_json(
self.config.elecprice.provider_settings.import_json, key_prefix="elecprice"
)
if self.config.elecpriceimport_file_path is not None:
self.import_from_file(self.config.elecpriceimport_file_path, key_prefix="elecprice")
if self.config.elecpriceimport_json is not None:
self.import_from_json(self.config.elecpriceimport_json, key_prefix="elecprice")

View File

@@ -6,8 +6,6 @@ from pathlib import Path
import numpy as np
from scipy.interpolate import RegularGridInterpolator
from akkudoktoreos.core.coreabc import SingletonMixin
class SelfConsumptionProbabilityInterpolator:
def __init__(self, filepath: str | Path):
@@ -69,17 +67,5 @@ class SelfConsumptionProbabilityInterpolator:
# return self_consumption_rate
class EOSLoadInterpolator(SelfConsumptionProbabilityInterpolator, SingletonMixin):
def __init__(self) -> None:
if hasattr(self, "_initialized"):
return
filename = Path(__file__).parent.resolve() / ".." / "data" / "regular_grid_interpolator.pkl"
super().__init__(filename)
# Initialize the Energy Management System, it is a singleton.
eos_load_interpolator = EOSLoadInterpolator()
def get_eos_load_interpolator() -> EOSLoadInterpolator:
return eos_load_interpolator
# Test the function
# print(calculate_self_consumption(1000, 1200))

View File

@@ -1,26 +1,18 @@
"""Load forecast module for load predictions."""
from typing import Optional, Union
from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.loadimport import LoadImportCommonSettings
logger = get_logger(__name__)
class LoadCommonSettings(SettingsBaseModel):
"""Load Prediction Configuration."""
"""Common settings for loaod forecast providers."""
provider: Optional[str] = Field(
default=None,
description="Load provider id of provider to be used.",
examples=["LoadAkkudoktor"],
)
provider_settings: Optional[Union[LoadAkkudoktorCommonSettings, LoadImportCommonSettings]] = (
Field(default=None, description="Provider settings", examples=[None])
load_provider: Optional[str] = Field(
default=None, description="Load provider id of provider to be used."
)

View File

@@ -33,18 +33,18 @@ class LoadProvider(PredictionProvider):
LoadProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables:
provider (str): Prediction provider for load.
load_provider (str): Prediction provider for load.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`.
calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`.
based on `start_datetime` and `prediction_historic_hours`.
"""
# overload
@@ -58,4 +58,4 @@ class LoadProvider(PredictionProvider):
return "LoadProvider"
def enabled(self) -> bool:
return self.provider_id() == self.config.load.provider
return self.provider_id() == self.config.load_provider

View File

@@ -17,7 +17,7 @@ class LoadAkkudoktorCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file."""
loadakkudoktor_year_energy: Optional[float] = Field(
default=None, description="Yearly energy consumption (kWh).", examples=[40421]
default=None, description="Yearly energy consumption (kWh)."
)
@@ -91,9 +91,7 @@ class LoadAkkudoktor(LoadProvider):
list(zip(file_data["yearly_profiles"], file_data["yearly_profiles_std"]))
)
# Calculate values in W by relative profile data and yearly consumption given in kWh
data_year_energy = (
profile_data * self.config.load.provider_settings.loadakkudoktor_year_energy * 1000
)
data_year_energy = profile_data * self.config.loadakkudoktor_year_energy * 1000
except FileNotFoundError:
error_msg = f"Error: File {load_file} not found."
logger.error(error_msg)
@@ -111,7 +109,7 @@ class LoadAkkudoktor(LoadProvider):
# We provide prediction starting at start of day, to be compatible to old system.
# End date for prediction is prediction hours from now.
date = self.start_datetime.start_of("day")
end_date = self.start_datetime.add(hours=self.config.prediction.hours)
end_date = self.start_datetime.add(hours=self.config.prediction_hours)
while compare_datetimes(date, end_date).lt:
# Extract mean (index 0) and standard deviation (index 1) for the given day and hour
# Day indexing starts at 0, -1 because of that
@@ -129,4 +127,4 @@ class LoadAkkudoktor(LoadProvider):
self.update_value(date, values)
date += to_duration("1 hour")
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
self.update_datetime = to_datetime(in_timezone=self.config.timezone)

View File

@@ -22,19 +22,15 @@ logger = get_logger(__name__)
class LoadImportCommonSettings(SettingsBaseModel):
"""Common settings for load data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field(
default=None,
description="Path to the file to import load data from.",
examples=[None, "/path/to/yearly_load.json"],
load_import_file_path: Optional[Union[str, Path]] = Field(
default=None, description="Path to the file to import load data from."
)
import_json: Optional[str] = Field(
default=None,
description="JSON string, dictionary of load forecast value lists.",
examples=['{"load0_mean": [676.71, 876.19, 527.13]}'],
load_import_json: Optional[str] = Field(
default=None, description="JSON string, dictionary of load forecast value lists."
)
# Validators
@field_validator("import_file_path", mode="after")
@field_validator("load_import_file_path", mode="after")
@classmethod
def validate_loadimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
if value is None:
@@ -62,7 +58,7 @@ class LoadImport(LoadProvider, PredictionImportProvider):
return "LoadImport"
def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.load.provider_settings.import_file_path:
self.import_from_file(self.config.provider_settings.import_file_path, key_prefix="load")
if self.config.load.provider_settings.import_json:
self.import_from_json(self.config.load.provider_settings.import_json, key_prefix="load")
if self.config.load_import_file_path is not None:
self.import_from_file(self.config.load_import_file_path, key_prefix="load")
if self.config.load_import_json is not None:
self.import_from_json(self.config.load_import_json, key_prefix="load")

View File

@@ -28,7 +28,7 @@ Attributes:
from typing import List, Optional, Union
from pydantic import Field
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.elecpriceakkudoktor import ElecPriceAkkudoktor
@@ -41,34 +41,65 @@ from akkudoktoreos.prediction.pvforecastimport import PVForecastImport
from akkudoktoreos.prediction.weatherbrightsky import WeatherBrightSky
from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside
from akkudoktoreos.prediction.weatherimport import WeatherImport
from akkudoktoreos.utils.datetimeutil import to_timezone
class PredictionCommonSettings(SettingsBaseModel):
"""General Prediction Configuration.
"""Base configuration for prediction settings, including forecast duration, geographic location, and time zone.
This class provides configuration for prediction settings, allowing users to specify
parameters such as the forecast duration (in hours).
Validators ensure each parameter is within a specified range.
parameters such as the forecast duration (in hours) and location (latitude and longitude).
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
determines the time zone based on latitude and longitude.
Attributes:
hours (Optional[int]): Number of hours into the future for predictions.
prediction_hours (Optional[int]): Number of hours into the future for predictions.
Must be non-negative.
historic_hours (Optional[int]): Number of hours into the past for historical data.
prediction_historic_hours (Optional[int]): Number of hours into the past for historical data.
Must be non-negative.
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
Properties:
timezone (Optional[str]): Computed time zone string based on the specified latitude
and longitude.
Validators:
validate_hours (int): Ensures `hours` is a non-negative integer.
validate_historic_hours (int): Ensures `historic_hours` is a non-negative integer.
validate_prediction_hours (int): Ensures `prediction_hours` is a non-negative integer.
validate_prediction_historic_hours (int): Ensures `prediction_historic_hours` is a non-negative integer.
validate_latitude (float): Ensures `latitude` is within the range -90 to 90.
validate_longitude (float): Ensures `longitude` is within the range -180 to 180.
"""
hours: Optional[int] = Field(
prediction_hours: Optional[int] = Field(
default=48, ge=0, description="Number of hours into the future for predictions"
)
historic_hours: Optional[int] = Field(
prediction_historic_hours: Optional[int] = Field(
default=48,
ge=0,
description="Number of hours into the past for historical predictions data",
)
latitude: Optional[float] = Field(
default=None,
ge=-90.0,
le=90.0,
description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)",
)
longitude: Optional[float] = Field(
default=None,
ge=-180.0,
le=180.0,
description="Longitude in decimal degrees, within -180 to 180 (°)",
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def timezone(self) -> Optional[str]:
"""Compute timezone based on latitude and longitude."""
if self.latitude and self.longitude:
return to_timezone(location=(self.latitude, self.longitude), as_string=True)
return None
class Prediction(PredictionContainer):

View File

@@ -114,16 +114,16 @@ class PredictionStartEndKeepMixin(PredictionBase):
@computed_field # type: ignore[prop-decorator]
@property
def end_datetime(self) -> Optional[DateTime]:
"""Compute the end datetime based on the `start_datetime` and `hours`.
"""Compute the end datetime based on the `start_datetime` and `prediction_hours`.
Ajusts the calculated end time if DST transitions occur within the prediction window.
Returns:
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
"""
if self.start_datetime and self.config.prediction.hours:
if self.start_datetime and self.config.prediction_hours:
end_datetime = self.start_datetime + to_duration(
f"{self.config.prediction.hours} hours"
f"{self.config.prediction_hours} hours"
)
dst_change = end_datetime.offset_hours - self.start_datetime.offset_hours
logger.debug(f"Pre: {self.start_datetime}..{end_datetime}: DST change: {dst_change}")
@@ -147,10 +147,10 @@ class PredictionStartEndKeepMixin(PredictionBase):
return None
historic_hours = self.historic_hours_min()
if (
self.config.prediction.historic_hours
and self.config.prediction.historic_hours > historic_hours
self.config.prediction_historic_hours
and self.config.prediction_historic_hours > historic_hours
):
historic_hours = int(self.config.prediction.historic_hours)
historic_hours = int(self.config.prediction_historic_hours)
return self.start_datetime - to_duration(f"{historic_hours} hours")
@computed_field # type: ignore[prop-decorator]

View File

@@ -1,157 +1,397 @@
"""PV forecast module for PV power predictions."""
from typing import Any, ClassVar, List, Optional, Self
from typing import Any, ClassVar, List, Optional
from pydantic import Field, computed_field, field_validator, model_validator
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.prediction.pvforecastimport import PVForecastImportCommonSettings
from akkudoktoreos.utils.docs import get_model_structure_from_examples
logger = get_logger(__name__)
class PVForecastPlaneSetting(SettingsBaseModel):
"""PV Forecast Plane Configuration."""
# latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
surface_tilt: Optional[float] = Field(
default=None,
description="Tilt angle from horizontal plane. Ignored for two-axis tracking.",
examples=[10.0, 20.0],
)
surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
examples=[10.0, 20.0],
)
userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
examples=[[10.0, 20.0, 30.0], [5.0, 15.0, 25.0]],
)
peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW.", examples=[5.0, 3.5]
)
pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
loss: Optional[float] = Field(default=14.0, description="Sum of PV system losses in percent")
trackingtype: Optional[int] = Field(
default=None,
ge=0,
le=5,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
examples=[0, 1, 2, 3, 4, 5],
)
optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
examples=[False],
)
optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
examples=[False],
)
albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
examples=[None],
)
module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane.", examples=[None]
)
inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane.", examples=[None]
)
inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]", examples=[6000, 4000]
)
modules_per_string: Optional[int] = Field(
default=None,
description="Number of the PV modules of the strings of this plane.",
examples=[20],
)
strings_per_inverter: Optional[int] = Field(
default=None,
description="Number of the strings of the inverter of this plane.",
examples=[2],
)
@model_validator(mode="after")
def validate_list_length(self) -> Self:
# Check if either attribute is set and add to active planes
if self.trackingtype == 2:
# Tilt angle from horizontal plane is ignored for two-axis tracking.
if self.surface_azimuth is None:
raise ValueError("If trackingtype is set, azimuth must be set as well.")
elif self.surface_tilt is None or self.surface_azimuth is None:
raise ValueError("surface_tilt and surface_azimuth must be set.")
return self
@field_validator("mountingplace")
def validate_mountingplace(cls, mountingplace: Optional[str]) -> Optional[str]:
if mountingplace is not None and mountingplace not in ["free", "building"]:
raise ValueError(f"Invalid mountingplace: {mountingplace}")
return mountingplace
@field_validator("pvtechchoice")
def validate_pvtechchoice(cls, pvtechchoice: Optional[str]) -> Optional[str]:
if pvtechchoice is not None and pvtechchoice not in ["crystSi", "CIS", "CdTe", "Unknown"]:
raise ValueError(f"Invalid pvtechchoice: {pvtechchoice}")
return pvtechchoice
class PVForecastCommonSettings(SettingsBaseModel):
"""PV Forecast Configuration."""
# General plane parameters
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/iotools/pvgis.html
# Inverter Parameters
# https://pvlib-python.readthedocs.io/en/stable/_modules/pvlib/inverter.html
provider: Optional[str] = Field(
pvforecast_provider: Optional[str] = Field(
default=None, description="PVForecast provider id of provider to be used."
)
# pvforecast0_latitude: Optional[float] = Field(default=None, description="Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)")
# Plane 0
pvforecast0_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast0_surface_azimuth: Optional[float] = Field(
default=None,
description="PVForecast provider id of provider to be used.",
examples=["PVForecastAkkudoktor"],
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
planes: Optional[list[PVForecastPlaneSetting]] = Field(
pvforecast0_userhorizon: Optional[List[float]] = Field(
default=None,
description="Plane configuration.",
examples=[get_model_structure_from_examples(PVForecastPlaneSetting, True)],
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast0_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast0_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast0_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast0_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast0_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast0_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast0_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast0_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast0_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast0_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast0_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast0_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast0_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 1
pvforecast1_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast1_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast1_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast1_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast1_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast1_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast1_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast1_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast1_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast1_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast1_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast1_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast1_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast1_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast1_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast1_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 2
pvforecast2_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast2_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast2_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast2_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast2_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast2_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast2_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast2_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast2_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast2_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast2_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast2_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast2_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast2_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast2_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast2_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 3
pvforecast3_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast3_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast3_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast3_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast3_pvtechchoice: Optional[str] = Field(
default="crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast3_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast3_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast3_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast3_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast3_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast3_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast3_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast3_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast3_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast3_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast3_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 4
pvforecast4_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast4_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast4_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast4_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast4_pvtechchoice: Optional[str] = Field(
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast4_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast4_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast4_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast4_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast4_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast4_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast4_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast4_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast4_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast4_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast4_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
# Plane 5
pvforecast5_surface_tilt: Optional[float] = Field(
default=None, description="Tilt angle from horizontal plane. Ignored for two-axis tracking."
)
pvforecast5_surface_azimuth: Optional[float] = Field(
default=None,
description="Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).",
)
pvforecast5_userhorizon: Optional[List[float]] = Field(
default=None,
description="Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.",
)
pvforecast5_peakpower: Optional[float] = Field(
default=None, description="Nominal power of PV system in kW."
)
pvforecast5_pvtechchoice: Optional[str] = Field(
"crystSi", description="PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'."
)
pvforecast5_mountingplace: Optional[str] = Field(
default="free",
description="Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.",
)
pvforecast5_loss: Optional[float] = Field(
default=14.0, description="Sum of PV system losses in percent"
)
pvforecast5_trackingtype: Optional[int] = Field(
default=None,
description="Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.",
)
pvforecast5_optimal_surface_tilt: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt angle. Ignored for two-axis tracking.",
)
pvforecast5_optimalangles: Optional[bool] = Field(
default=False,
description="Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.",
)
pvforecast5_albedo: Optional[float] = Field(
default=None,
description="Proportion of the light hitting the ground that it reflects back.",
)
pvforecast5_module_model: Optional[str] = Field(
default=None, description="Model of the PV modules of this plane."
)
pvforecast5_inverter_model: Optional[str] = Field(
default=None, description="Model of the inverter of this plane."
)
pvforecast5_inverter_paco: Optional[int] = Field(
default=None, description="AC power rating of the inverter. [W]"
)
pvforecast5_modules_per_string: Optional[int] = Field(
default=None, description="Number of the PV modules of the strings of this plane."
)
pvforecast5_strings_per_inverter: Optional[int] = Field(
default=None, description="Number of the strings of the inverter of this plane."
)
max_planes: ClassVar[int] = 6 # Maximum number of planes that can be set
pvforecast_max_planes: ClassVar[int] = 6 # Maximum number of planes that can be set
@field_validator("planes")
def validate_planes(
cls, planes: Optional[list[PVForecastPlaneSetting]]
) -> Optional[list[PVForecastPlaneSetting]]:
if planes is not None and len(planes) > cls.max_planes:
raise ValueError(f"Maximum number of supported planes: {cls.max_planes}.")
return planes
provider_settings: Optional[PVForecastImportCommonSettings] = Field(
default=None, description="Provider settings", examples=[None]
)
## Computed fields
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def planes_peakpower(self) -> List[float]:
def pvforecast_planes(self) -> List[str]:
"""Compute a list of active planes."""
active_planes = []
# Loop through pvforecast0 to pvforecast4
for i in range(self.pvforecast_max_planes):
plane = f"pvforecast{i}"
tackingtype_attr = f"{plane}_trackingtype"
tilt_attr = f"{plane}_surface_tilt"
azimuth_attr = f"{plane}_surface_azimuth"
# Check if either attribute is set and add to active planes
if getattr(self, tackingtype_attr, None) == 2:
# Tilt angle from horizontal plane is gnored for two-axis tracking.
if getattr(self, azimuth_attr, None) is not None:
active_planes.append(f"pvforecast{i}")
elif getattr(self, tilt_attr, None) and getattr(self, azimuth_attr, None):
active_planes.append(f"pvforecast{i}")
return active_planes
@computed_field # type: ignore[prop-decorator]
@property
def pvforecast_planes_peakpower(self) -> List[float]:
"""Compute a list of the peak power per active planes."""
planes_peakpower = []
if self.planes:
for plane in self.planes:
peakpower = plane.peakpower
for plane in self.pvforecast_planes:
peakpower_attr = f"{plane}_peakpower"
peakpower = getattr(self, peakpower_attr, None)
if peakpower is None:
# TODO calculate peak power from modules/strings
planes_peakpower.append(float(5000))
@@ -162,13 +402,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator]
@property
def planes_azimuth(self) -> List[float]:
def pvforecast_planes_azimuth(self) -> List[float]:
"""Compute a list of the azimuths per active planes."""
planes_azimuth = []
if self.planes:
for plane in self.planes:
azimuth = plane.surface_azimuth
for plane in self.pvforecast_planes:
azimuth_attr = f"{plane}_surface_azimuth"
azimuth = getattr(self, azimuth_attr, None)
if azimuth is None:
# TODO Use default
planes_azimuth.append(float(180))
@@ -179,13 +419,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator]
@property
def planes_tilt(self) -> List[float]:
def pvforecast_planes_tilt(self) -> List[float]:
"""Compute a list of the tilts per active planes."""
planes_tilt = []
if self.planes:
for plane in self.planes:
tilt = plane.surface_tilt
for plane in self.pvforecast_planes:
tilt_attr = f"{plane}_surface_tilt"
tilt = getattr(self, tilt_attr, None)
if tilt is None:
# TODO Use default
planes_tilt.append(float(30))
@@ -196,13 +436,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator]
@property
def planes_userhorizon(self) -> Any:
def pvforecast_planes_userhorizon(self) -> Any:
"""Compute a list of the user horizon per active planes."""
planes_userhorizon = []
if self.planes:
for plane in self.planes:
userhorizon = plane.userhorizon
for plane in self.pvforecast_planes:
userhorizon_attr = f"{plane}_userhorizon"
userhorizon = getattr(self, userhorizon_attr, None)
if userhorizon is None:
# TODO Use default
planes_userhorizon.append([float(0), float(0)])
@@ -213,13 +453,13 @@ class PVForecastCommonSettings(SettingsBaseModel):
@computed_field # type: ignore[prop-decorator]
@property
def planes_inverter_paco(self) -> Any:
def pvforecast_planes_inverter_paco(self) -> Any:
"""Compute a list of the maximum power rating of the inverter per active planes."""
planes_inverter_paco = []
if self.planes:
for plane in self.planes:
inverter_paco = plane.inverter_paco
for plane in self.pvforecast_planes:
inverter_paco_attr = f"{plane}_inverter_paco"
inverter_paco = getattr(self, inverter_paco_attr, None)
if inverter_paco is None:
# TODO Use default - no clipping
planes_inverter_paco.append(25000.0)

View File

@@ -28,18 +28,18 @@ class PVForecastProvider(PredictionProvider):
PVForecastProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables:
provider (str): Prediction provider for pvforecast.
pvforecast_provider (str): Prediction provider for pvforecast.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions (inlcusive), defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range (exclusive),
calculated based on `start_datetime` and `hours`.
calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data (inclusive), calculated
based on `start_datetime` and `historic_hours`.
based on `start_datetime` and `prediction_historic_hours`.
"""
# overload
@@ -54,6 +54,6 @@ class PVForecastProvider(PredictionProvider):
def enabled(self) -> bool:
logger.debug(
f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast.provider}"
f"PVForecastProvider ID {self.provider_id()} vs. config {self.config.pvforecast_provider}"
)
return self.provider_id() == self.config.pvforecast.provider
return self.provider_id() == self.config.pvforecast_provider

View File

@@ -14,33 +14,21 @@ Classes:
Example:
# Set up the configuration with necessary fields for URL generation
settings_data = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
}
]
}
"pvforecast_provider": "Akkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
}
# Create the config instance from the provided data
@@ -59,12 +47,12 @@ Example:
print(forecast.report_ac_power_and_measurement())
Attributes:
hours (int): Number of hours into the future to forecast. Default is 48.
historic_hours (int): Number of past hours to retain for analysis. Default is 24.
prediction_hours (int): Number of hours into the future to forecast. Default is 48.
prediction_historic_hours (int): Number of past hours to retain for analysis. Default is 24.
latitude (float): Latitude for the forecast location.
longitude (float): Longitude for the forecast location.
start_datetime (datetime): Start time for the forecast, defaulting to current datetime.
end_datetime (datetime): Computed end datetime based on `start_datetime` and `hours`.
end_datetime (datetime): Computed end datetime based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime): Computed threshold datetime for retaining historical data.
Methods:
@@ -171,13 +159,13 @@ class PVForecastAkkudoktor(PVForecastProvider):
of hours into the future and retains historical data.
Attributes:
hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data.
prediction_hours (int, optional): Number of hours in the future for the forecast.
prediction_historic_hours (int, optional): Number of past hours for retaining data.
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
@@ -215,19 +203,19 @@ class PVForecastAkkudoktor(PVForecastProvider):
"""Build akkudoktor.net API request URL."""
base_url = "https://api.akkudoktor.net/forecast"
query_params = [
f"lat={self.config.general.latitude}",
f"lon={self.config.general.longitude}",
f"lat={self.config.latitude}",
f"lon={self.config.longitude}",
]
for i in range(len(self.config.pvforecast.planes)):
query_params.append(f"power={int(self.config.pvforecast.planes_peakpower[i] * 1000)}")
query_params.append(f"azimuth={int(self.config.pvforecast.planes_azimuth[i])}")
query_params.append(f"tilt={int(self.config.pvforecast.planes_tilt[i])}")
for i in range(len(self.config.pvforecast_planes)):
query_params.append(f"power={int(self.config.pvforecast_planes_peakpower[i] * 1000)}")
query_params.append(f"azimuth={int(self.config.pvforecast_planes_azimuth[i])}")
query_params.append(f"tilt={int(self.config.pvforecast_planes_tilt[i])}")
query_params.append(
f"powerInverter={int(self.config.pvforecast.planes_inverter_paco[i])}"
f"powerInverter={int(self.config.pvforecast_planes_inverter_paco[i])}"
)
horizon_values = ",".join(
str(int(h)) for h in self.config.pvforecast.planes_userhorizon[i]
str(int(h)) for h in self.config.pvforecast_planes_userhorizon[i]
)
query_params.append(f"horizont={horizon_values}")
@@ -238,7 +226,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
"cellCoEff=-0.36",
"inverterEfficiency=0.8",
"albedo=0.25",
f"timezone={self.config.general.timezone}",
f"timezone={self.config.timezone}",
"hourly=relativehumidity_2m%2Cwindspeed_10m",
]
)
@@ -267,7 +255,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
logger.debug(f"Response from {self._url()}: {response}")
akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return akkudoktor_data
def _update_data(self, force_update: Optional[bool] = False) -> None:
@@ -277,7 +265,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
`PVForecastAkkudoktorDataRecord`.
"""
# Assure we have something to request PV power for.
if not self.config.pvforecast.planes:
if not self.config.pvforecast_planes:
# No planes for PV
error_msg = "Requested PV forecast, but no planes configured."
logger.error(f"Configuration error: {error_msg}")
@@ -287,17 +275,17 @@ class PVForecastAkkudoktor(PVForecastProvider):
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
# Timezone of the PV system
if self.config.general.timezone != akkudoktor_data.meta.timezone:
error_msg = f"Configured timezone '{self.config.general.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'."
if self.config.timezone != akkudoktor_data.meta.timezone:
error_msg = f"Configured timezone '{self.config.timezone}' does not match Akkudoktor timezone '{akkudoktor_data.meta.timezone}'."
logger.error(f"Akkudoktor schema change: {error_msg}")
raise ValueError(error_msg)
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
if len(akkudoktor_data.values[0]) < self.config.prediction.hours:
if len(akkudoktor_data.values[0]) < self.config.prediction_hours:
# Expect one value set per prediction hour
error_msg = (
f"The forecast must cover at least {self.config.prediction.hours} hours, "
f"The forecast must cover at least {self.config.prediction_hours} hours, "
f"but only {len(akkudoktor_data.values[0])} data sets are given in forecast data."
)
logger.error(f"Akkudoktor schema change: {error_msg}")
@@ -308,7 +296,7 @@ class PVForecastAkkudoktor(PVForecastProvider):
# Iterate over forecast data points
for forecast_values in zip(*akkudoktor_data.values):
original_datetime = forecast_values[0].datetime
dt = to_datetime(original_datetime, in_timezone=self.config.general.timezone)
dt = to_datetime(original_datetime, in_timezone=self.config.timezone)
# Skip outdated forecast data
if compare_datetimes(dt, self.start_datetime.start_of("day")).lt:
@@ -326,9 +314,9 @@ class PVForecastAkkudoktor(PVForecastProvider):
self.update_value(dt, data)
if len(self) < self.config.prediction.hours:
if len(self) < self.config.prediction_hours:
raise ValueError(
f"The forecast must cover at least {self.config.prediction.hours} hours, "
f"The forecast must cover at least {self.config.prediction_hours} hours, "
f"but only {len(self)} hours starting from {self.start_datetime} "
f"were predicted."
)
@@ -377,47 +365,31 @@ if __name__ == "__main__":
"""
# Set up the configuration with necessary fields for URL generation
settings_data = {
"general": {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
}
# Initialize the forecast object with the generated configuration

View File

@@ -22,22 +22,21 @@ logger = get_logger(__name__)
class PVForecastImportCommonSettings(SettingsBaseModel):
"""Common settings for pvforecast data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field(
default=None,
description="Path to the file to import PV forecast data from.",
examples=[None, "/path/to/pvforecast.json"],
pvforecastimport_file_path: Optional[Union[str, Path]] = Field(
default=None, description="Path to the file to import PV forecast data from."
)
import_json: Optional[str] = Field(
pvforecastimport_json: Optional[str] = Field(
default=None,
description="JSON string, dictionary of PV forecast value lists.",
examples=['{"pvforecast_ac_power": [0, 8.05, 352.91]}'],
)
# Validators
@field_validator("import_file_path", mode="after")
@field_validator("pvforecastimport_file_path", mode="after")
@classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
def validate_pvforecastimport_file_path(
cls, value: Optional[Union[str, Path]]
) -> Optional[Path]:
if value is None:
return None
if isinstance(value, str):
@@ -63,13 +62,7 @@ class PVForecastImport(PVForecastProvider, PredictionImportProvider):
return "PVForecastImport"
def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.pvforecast.provider_settings.import_file_path is not None:
self.import_from_file(
self.config.pvforecast.provider_settings.import_file_path,
key_prefix="pvforecast",
)
if self.config.pvforecast.provider_settings.import_json is not None:
self.import_from_json(
self.config.pvforecast.provider_settings.import_json,
key_prefix="pvforecast",
)
if self.config.pvforecastimport_file_path is not None:
self.import_from_file(self.config.pvforecastimport_file_path, key_prefix="pvforecast")
if self.config.pvforecastimport_json is not None:
self.import_from_json(self.config.pvforecastimport_json, key_prefix="pvforecast")

View File

@@ -5,18 +5,9 @@ from typing import Optional
from pydantic import Field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.prediction.weatherimport import WeatherImportCommonSettings
class WeatherCommonSettings(SettingsBaseModel):
"""Weather Forecast Configuration."""
provider: Optional[str] = Field(
default=None,
description="Weather provider id of provider to be used.",
examples=["WeatherImport"],
)
provider_settings: Optional[WeatherImportCommonSettings] = Field(
default=None, description="Provider settings", examples=[None]
weather_provider: Optional[str] = Field(
default=None, description="Weather provider id of provider to be used."
)

View File

@@ -101,18 +101,18 @@ class WeatherProvider(PredictionProvider):
WeatherProvider is a thread-safe singleton, ensuring only one instance of this class is created.
Configuration variables:
provider (str): Prediction provider for weather.
weather_provider (str): Prediction provider for weather.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`.
calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`.
based on `start_datetime` and `prediction_historic_hours`.
"""
# overload
@@ -126,7 +126,7 @@ class WeatherProvider(PredictionProvider):
return "WeatherProvider"
def enabled(self) -> bool:
return self.provider_id() == self.config.weather.provider
return self.provider_id() == self.config.weather_provider
@classmethod
def estimate_irradiance_from_cloud_cover(

View File

@@ -62,13 +62,13 @@ class WeatherBrightSky(WeatherProvider):
of hours into the future and retains historical data.
Attributes:
hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data.
prediction_hours (int, optional): Number of hours in the future for the forecast.
prediction_historic_hours (int, optional): Number of past hours for retaining data.
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
@@ -99,7 +99,7 @@ class WeatherBrightSky(WeatherProvider):
date = to_datetime(self.start_datetime, as_string="YYYY-MM-DD")
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
response = requests.get(
f"{source}/weather?lat={self.config.general.latitude}&lon={self.config.general.longitude}&date={date}&last_date={last_date}&tz={self.config.general.timezone}"
f"{source}/weather?lat={self.config.latitude}&lon={self.config.longitude}&date={date}&last_date={last_date}&tz={self.config.timezone}"
)
response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {source}: {response}")
@@ -109,7 +109,7 @@ class WeatherBrightSky(WeatherProvider):
logger.error(error_msg)
raise ValueError(error_msg)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return brightsky_data
def _description_to_series(self, description: str) -> pd.Series:
@@ -200,7 +200,7 @@ class WeatherBrightSky(WeatherProvider):
description = "Total Clouds (% Sky Obscured)"
cloud_cover = self._description_to_series(description)
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
self.config.general.latitude, self.config.general.longitude, cloud_cover
self.config.latitude, self.config.longitude, cloud_cover
)
description = "Global Horizontal Irradiance (W/m2)"

View File

@@ -68,15 +68,15 @@ class WeatherClearOutside(WeatherProvider):
WeatherClearOutside is a thread-safe singleton, ensuring only one instance of this class is created.
Attributes:
hours (int, optional): The number of hours into the future for which predictions are generated.
historic_hours (int, optional): The number of past hours for which historical data is retained.
prediction_hours (int, optional): The number of hours into the future for which predictions are generated.
prediction_historic_hours (int, optional): The number of past hours for which historical data is retained.
latitude (float, optional): The latitude in degrees, must be within -90 to 90.
longitude (float, optional): The longitude in degrees, must be within -180 to 180.
start_datetime (datetime, optional): The starting datetime for predictions, defaults to the current datetime if unspecified.
end_datetime (datetime, computed): The datetime representing the end of the prediction range,
calculated based on `start_datetime` and `hours`.
calculated based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The earliest datetime for retaining historical data, calculated
based on `start_datetime` and `historic_hours`.
based on `start_datetime` and `prediction_historic_hours`.
"""
@classmethod
@@ -91,13 +91,13 @@ class WeatherClearOutside(WeatherProvider):
response: Weather forecast request reponse from ClearOutside.
"""
source = "https://clearoutside.com/forecast"
latitude = round(self.config.general.latitude, 2)
longitude = round(self.config.general.longitude, 2)
latitude = round(self.config.latitude, 2)
longitude = round(self.config.longitude, 2)
response = requests.get(f"{source}/{latitude}/{longitude}?desktop=true")
response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {source}: {response}")
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return response
def _update_data(self, force_update: Optional[bool] = None) -> None:
@@ -307,7 +307,7 @@ class WeatherClearOutside(WeatherProvider):
data=clearout_data["Total Clouds (% Sky Obscured)"], index=clearout_data["DateTime"]
)
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
self.config.general.latitude, self.config.general.longitude, cloud_cover
self.config.latitude, self.config.longitude, cloud_cover
)
# Add GHI, DNI, DHI to clearout data

View File

@@ -22,22 +22,18 @@ logger = get_logger(__name__)
class WeatherImportCommonSettings(SettingsBaseModel):
"""Common settings for weather data import from file or JSON string."""
import_file_path: Optional[Union[str, Path]] = Field(
default=None,
description="Path to the file to import weather data from.",
examples=[None, "/path/to/weather_data.json"],
weatherimport_file_path: Optional[Union[str, Path]] = Field(
default=None, description="Path to the file to import weather data from."
)
import_json: Optional[str] = Field(
default=None,
description="JSON string, dictionary of weather forecast value lists.",
examples=['{"weather_temp_air": [18.3, 17.8, 16.9]}'],
weatherimport_json: Optional[str] = Field(
default=None, description="JSON string, dictionary of weather forecast value lists."
)
# Validators
@field_validator("import_file_path", mode="after")
@field_validator("weatherimport_file_path", mode="after")
@classmethod
def validate_import_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
def validate_weatherimport_file_path(cls, value: Optional[Union[str, Path]]) -> Optional[Path]:
if value is None:
return None
if isinstance(value, str):
@@ -63,11 +59,7 @@ class WeatherImport(WeatherProvider, PredictionImportProvider):
return "WeatherImport"
def _update_data(self, force_update: Optional[bool] = False) -> None:
if self.config.weather.provider_settings.import_file_path:
self.import_from_file(
self.config.weather.provider_settings.import_file_path, key_prefix="weather"
)
if self.config.weather.provider_settings.import_json:
self.import_from_json(
self.config.weather.provider_settings.import_json, key_prefix="weather"
)
if self.config.weatherimport_file_path is not None:
self.import_from_file(self.config.weatherimport_file_path, key_prefix="weather")
if self.config.weatherimport_json is not None:
self.import_from_json(self.config.weatherimport_json, key_prefix="weather")

View File

@@ -29,11 +29,7 @@ from akkudoktoreos.optimization.genetic import (
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.prediction.elecprice import ElecPriceCommonSettings
from akkudoktoreos.prediction.load import LoadCommonSettings
from akkudoktoreos.prediction.loadakkudoktor import LoadAkkudoktorCommonSettings
from akkudoktoreos.prediction.prediction import PredictionCommonSettings, get_prediction
from akkudoktoreos.prediction.pvforecast import PVForecastCommonSettings
from akkudoktoreos.prediction.prediction import get_prediction
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
logger = get_logger(__name__)
@@ -153,16 +149,16 @@ def start_eosdash() -> subprocess.Popen:
if args is None:
# No command line arguments
host = config_eos.server.eosdash_host
port = config_eos.server.eosdash_port
eos_host = config_eos.server.host
eos_port = config_eos.server.port
host = config_eos.server_eosdash_host
port = config_eos.server_eosdash_port
eos_host = config_eos.server_eos_host
eos_port = config_eos.server_eos_port
log_level = "info"
access_log = False
reload = False
else:
host = args.host
port = config_eos.server.eosdash_port if config_eos.server.eosdash_port else (args.port + 1)
port = config_eos.server_eosdash_port if config_eos.server_eosdash_port else (args.port + 1)
eos_host = args.host
eos_port = args.port
log_level = args.log_level
@@ -205,7 +201,7 @@ def start_eosdash() -> subprocess.Popen:
async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
"""Lifespan manager for the app."""
# On startup
if config_eos.server.startup_eosdash:
if config_eos.server_eos_startup_eosdash:
try:
eosdash_process = start_eosdash()
except Exception as e:
@@ -227,9 +223,12 @@ app = FastAPI(
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
lifespan=lifespan,
root_path=str(Path(__file__).parent),
)
# That's the problem
opt_class = optimization_problem(verbose=bool(config_eos.server_eos_verbose))
server_dir = Path(__file__).parent.resolve()
@@ -237,24 +236,66 @@ class PdfResponse(FileResponse):
media_type = "application/pdf"
@app.put("/v1/config/reset", tags=["config"])
@app.put("/v1/config/value")
def fastapi_config_value_put(
key: Annotated[str, Query(description="configuration key")],
value: Annotated[Any, Query(description="configuration value")],
) -> ConfigEOS:
"""Set the configuration option in the settings.
Args:
key (str): configuration key
value (Any): configuration value
Returns:
configuration (ConfigEOS): The current configuration after the write.
"""
if key not in config_eos.config_keys:
raise HTTPException(status_code=404, detail=f"Key '{key}' is not available.")
if key in config_eos.config_keys_read_only:
raise HTTPException(status_code=404, detail=f"Key '{key}' is read only.")
try:
setattr(config_eos, key, value)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on update of configuration: {e}")
return config_eos
@app.post("/v1/config/update")
def fastapi_config_update_post() -> ConfigEOS:
"""Reset the configuration to the EOS configuration file.
"""Update the configuration from the EOS configuration file.
Returns:
configuration (ConfigEOS): The current configuration after update.
"""
try:
config_eos.reset_settings()
except Exception as e:
_, config_file_path = config_eos.from_config_file()
except:
raise HTTPException(
status_code=404,
detail=f"Cannot update configuration from file '{config_eos.config_file_path}': {e}",
detail=f"Cannot update configuration from file '{config_file_path}'.",
)
return config_eos
@app.put("/v1/config/file", tags=["config"])
@app.get("/v1/config/file")
def fastapi_config_file_get() -> SettingsEOS:
"""Get the settings as defined by the EOS configuration file.
Returns:
settings (SettingsEOS): The settings defined by the EOS configuration file.
"""
try:
settings, config_file_path = config_eos.settings_from_config_file()
except:
raise HTTPException(
status_code=404,
detail=f"Cannot read configuration from file '{config_file_path}'.",
)
return settings
@app.put("/v1/config/file")
def fastapi_config_file_put() -> ConfigEOS:
"""Save the current configuration to the EOS configuration file.
@@ -271,7 +312,7 @@ def fastapi_config_file_put() -> ConfigEOS:
return config_eos
@app.get("/v1/config", tags=["config"])
@app.get("/v1/config")
def fastapi_config_get() -> ConfigEOS:
"""Get the current configuration.
@@ -281,13 +322,15 @@ def fastapi_config_get() -> ConfigEOS:
return config_eos
@app.put("/v1/config", tags=["config"])
def fastapi_config_put(settings: SettingsEOS) -> ConfigEOS:
"""Update the current config with the provided settings.
@app.put("/v1/config")
def fastapi_config_put(
settings: Annotated[SettingsEOS, Query(description="settings")],
) -> ConfigEOS:
"""Write the provided settings into the current settings.
Note that for any setting value that is None or unset, the configuration will fall back to
values from other sources such as environment variables, the EOS configuration file, or default
values.
The existing settings are completely overwritten. Note that for any setting
value that is None, the configuration will fall back to values from other sources such as
environment variables, the EOS configuration file, or default values.
Args:
settings (SettingsEOS): The settings to write into the current settings.
@@ -296,19 +339,19 @@ def fastapi_config_put(settings: SettingsEOS) -> ConfigEOS:
configuration (ConfigEOS): The current configuration after the write.
"""
try:
config_eos.merge_settings(settings)
config_eos.merge_settings(settings, force=True)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error on update of configuration: {e}")
return config_eos
@app.get("/v1/measurement/keys", tags=["measurement"])
@app.get("/v1/measurement/keys")
def fastapi_measurement_keys_get() -> list[str]:
"""Get a list of available measurement keys."""
return sorted(measurement_eos.record_keys)
@app.get("/v1/measurement/load-mr/series/by-name", tags=["measurement"])
@app.get("/v1/measurement/load-mr/series/by-name")
def fastapi_measurement_load_mr_series_by_name_get(
name: Annotated[str, Query(description="Load name.")],
) -> PydanticDateTimeSeries:
@@ -324,7 +367,7 @@ def fastapi_measurement_load_mr_series_by_name_get(
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/load-mr/value/by-name", tags=["measurement"])
@app.put("/v1/measurement/load-mr/value/by-name")
def fastapi_measurement_load_mr_value_by_name_put(
datetime: Annotated[str, Query(description="Datetime.")],
name: Annotated[str, Query(description="Load name.")],
@@ -343,7 +386,7 @@ def fastapi_measurement_load_mr_value_by_name_put(
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/load-mr/series/by-name", tags=["measurement"])
@app.put("/v1/measurement/load-mr/series/by-name")
def fastapi_measurement_load_mr_series_by_name_put(
name: Annotated[str, Query(description="Load name.")], series: PydanticDateTimeSeries
) -> PydanticDateTimeSeries:
@@ -361,7 +404,7 @@ def fastapi_measurement_load_mr_series_by_name_put(
return PydanticDateTimeSeries.from_series(pdseries)
@app.get("/v1/measurement/series", tags=["measurement"])
@app.get("/v1/measurement/series")
def fastapi_measurement_series_get(
key: Annotated[str, Query(description="Prediction key.")],
) -> PydanticDateTimeSeries:
@@ -372,7 +415,7 @@ def fastapi_measurement_series_get(
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/value", tags=["measurement"])
@app.put("/v1/measurement/value")
def fastapi_measurement_value_put(
datetime: Annotated[str, Query(description="Datetime.")],
key: Annotated[str, Query(description="Prediction key.")],
@@ -386,7 +429,7 @@ def fastapi_measurement_value_put(
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/series", tags=["measurement"])
@app.put("/v1/measurement/series")
def fastapi_measurement_series_put(
key: Annotated[str, Query(description="Prediction key.")], series: PydanticDateTimeSeries
) -> PydanticDateTimeSeries:
@@ -399,47 +442,27 @@ def fastapi_measurement_series_put(
return PydanticDateTimeSeries.from_series(pdseries)
@app.put("/v1/measurement/dataframe", tags=["measurement"])
@app.put("/v1/measurement/dataframe")
def fastapi_measurement_dataframe_put(data: PydanticDateTimeDataFrame) -> None:
"""Merge the measurement data given as dataframe into EOS measurements."""
dataframe = data.to_dataframe()
measurement_eos.import_from_dataframe(dataframe)
@app.put("/v1/measurement/data", tags=["measurement"])
@app.put("/v1/measurement/data")
def fastapi_measurement_data_put(data: PydanticDateTimeData) -> None:
"""Merge the measurement data given as datetime data into EOS measurements."""
datetimedata = data.to_dict()
measurement_eos.import_from_dict(datetimedata)
@app.get("/v1/prediction/providers", tags=["prediction"])
def fastapi_prediction_providers_get(enabled: Optional[bool] = None) -> list[str]:
"""Get a list of available prediction providers.
Args:
enabled (bool): Return enabled/disabled providers. If unset, return all providers.
"""
if enabled is not None:
enabled_status = [enabled]
else:
enabled_status = [True, False]
return sorted(
[
provider.provider_id()
for provider in prediction_eos.providers
if provider.enabled() in enabled_status
]
)
@app.get("/v1/prediction/keys", tags=["prediction"])
@app.get("/v1/prediction/keys")
def fastapi_prediction_keys_get() -> list[str]:
"""Get a list of available prediction keys."""
return sorted(prediction_eos.record_keys)
@app.get("/v1/prediction/series", tags=["prediction"])
@app.get("/v1/prediction/series")
def fastapi_prediction_series_get(
key: Annotated[str, Query(description="Prediction key.")],
start_datetime: Annotated[
@@ -476,7 +499,7 @@ def fastapi_prediction_series_get(
return PydanticDateTimeSeries.from_series(pdseries)
@app.get("/v1/prediction/list", tags=["prediction"])
@app.get("/v1/prediction/list")
def fastapi_prediction_list_get(
key: Annotated[str, Query(description="Prediction key.")],
start_datetime: Annotated[
@@ -526,7 +549,7 @@ def fastapi_prediction_list_get(
return prediction_list
@app.post("/v1/prediction/update", tags=["prediction"])
@app.post("/v1/prediction/update")
def fastapi_prediction_update(force_update: bool = False, force_enable: bool = False) -> Response:
"""Update predictions for all providers.
@@ -539,12 +562,11 @@ def fastapi_prediction_update(force_update: bool = False, force_enable: bool = F
try:
prediction_eos.update_data(force_update=force_update, force_enable=force_enable)
except Exception as e:
raise e
# raise HTTPException(status_code=400, detail=f"Error on update of provider: {e}")
raise HTTPException(status_code=400, detail=f"Error on update of provider: {e}")
return Response()
@app.post("/v1/prediction/update/{provider_id}", tags=["prediction"])
@app.post("/v1/prediction/update/{provider_id}")
def fastapi_prediction_update_provider(
provider_id: str, force_update: Optional[bool] = False, force_enable: Optional[bool] = False
) -> Response:
@@ -568,7 +590,7 @@ def fastapi_prediction_update_provider(
return Response()
@app.get("/strompreis", tags=["prediction"])
@app.get("/strompreis")
def fastapi_strompreis() -> list[float]:
"""Deprecated: Electricity Market Price Prediction per Wh (€/Wh).
@@ -580,16 +602,14 @@ def fastapi_strompreis() -> list[float]:
Electricity price charges are added.
Note:
Set ElecPriceAkkudoktor as provider, then update data with
Set ElecPriceAkkudoktor as elecprice_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=elecprice_marketprice_wh' or
'/v1/prediction/list?key=elecprice_marketprice_kwh' instead.
"""
settings = SettingsEOS(
elecprice=ElecPriceCommonSettings(
provider="ElecPriceAkkudoktor",
)
elecprice_provider="ElecPriceAkkudoktor",
)
config_eos.merge_settings(settings=settings)
ems_eos.set_start_datetime() # Set energy management start datetime to current hour.
@@ -622,7 +642,7 @@ class GesamtlastRequest(PydanticBaseModel):
hours: int
@app.post("/gesamtlast", tags=["prediction"])
@app.post("/gesamtlast")
def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
"""Deprecated: Total Load Prediction with adjustment.
@@ -639,22 +659,16 @@ def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
'/v1/measurement/value'
"""
settings = SettingsEOS(
prediction=PredictionCommonSettings(
hours=request.hours,
),
load=LoadCommonSettings(
provider="LoadAkkudoktor",
provider_settings=LoadAkkudoktorCommonSettings(
prediction_hours=request.hours,
load_provider="LoadAkkudoktor",
loadakkudoktor_year_energy=request.year_energy,
),
),
)
config_eos.merge_settings(settings=settings)
ems_eos.set_start_datetime() # Set energy management start datetime to current hour.
# Insert measured data into EOS measurement
# Convert from energy per interval to dummy energy meter readings
measurement_key = "load0_mr"
measurement_key = "measurement_load0_mr"
measurement_eos.key_delete_by_datetime(key=measurement_key) # delete all load0_mr measurements
energy = {}
try:
@@ -703,7 +717,7 @@ def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
return prediction_list
@app.get("/gesamtlast_simple", tags=["prediction"])
@app.get("/gesamtlast_simple")
def fastapi_gesamtlast_simple(year_energy: float) -> list[float]:
"""Deprecated: Total Load Prediction.
@@ -717,18 +731,14 @@ def fastapi_gesamtlast_simple(year_energy: float) -> list[float]:
year_energy (float): Yearly energy consumption in Wh.
Note:
Set LoadAkkudoktor as provider, then update data with
Set LoadAkkudoktor as load_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=load_mean' instead.
"""
settings = SettingsEOS(
load=LoadCommonSettings(
provider="LoadAkkudoktor",
provider_settings=LoadAkkudoktorCommonSettings(
load_provider="LoadAkkudoktor",
loadakkudoktor_year_energy=year_energy / 1000, # Convert to kWh
),
)
)
config_eos.merge_settings(settings=settings)
ems_eos.set_start_datetime() # Set energy management start datetime to current hour.
@@ -759,7 +769,7 @@ class ForecastResponse(PydanticBaseModel):
pvpower: list[float]
@app.get("/pvforecast", tags=["prediction"])
@app.get("/pvforecast")
def fastapi_pvforecast() -> ForecastResponse:
"""Deprecated: PV Forecast Prediction.
@@ -770,25 +780,21 @@ def fastapi_pvforecast() -> ForecastResponse:
filled with the first available forecast value.
Note:
Set PVForecastAkkudoktor as provider, then update data with
Set PVForecastAkkudoktor as pvforecast_provider, then update data with
'/v1/prediction/update'
and then request data with
'/v1/prediction/list?key=pvforecast_ac_power' and
'/v1/prediction/list?key=pvforecastakkudoktor_temp_air' instead.
"""
settings = SettingsEOS(pvforecast=PVForecastCommonSettings(provider="PVForecastAkkudoktor"))
settings = SettingsEOS(
elecprice_provider="PVForecastAkkudoktor",
)
config_eos.merge_settings(settings=settings)
ems_eos.set_start_datetime() # Set energy management start datetime to current hour.
# Create PV forecast
try:
prediction_eos.update_data(force_update=True)
except ValueError as e:
raise HTTPException(
status_code=404,
detail=f"Can not get the PV forecast: {e}",
)
# Get the forcast starting at start of day
start_datetime = to_datetime().start_of("day")
@@ -814,35 +820,30 @@ def fastapi_pvforecast() -> ForecastResponse:
return ForecastResponse(temperature=temp_air, pvpower=ac_power)
@app.post("/optimize", tags=["optimize"])
@app.post("/optimize")
def fastapi_optimize(
parameters: OptimizationParameters,
start_hour: Annotated[
Optional[int], Query(description="Defaults to current hour of the day.")
] = None,
ngen: Optional[int] = None,
) -> OptimizeResponse:
if start_hour is None:
start_hour = to_datetime().hour
extra_args: dict[str, Any] = dict()
if ngen is not None:
extra_args["ngen"] = ngen
# TODO: Remove when config and prediction update is done by EMS.
config_eos.update()
prediction_eos.update_data()
# Perform optimization simulation
opt_class = optimization_problem(verbose=bool(config_eos.server.verbose))
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour, **extra_args)
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour)
# print(result)
return result
@app.get("/visualization_results.pdf", response_class=PdfResponse, tags=["optimize"])
@app.get("/visualization_results.pdf", response_class=PdfResponse)
def get_pdf() -> PdfResponse:
# Endpoint to serve the generated PDF with visualization results
output_path = config_eos.general.data_output_path
output_path = config_eos.data_output_path
if output_path is None or not output_path.is_dir():
raise HTTPException(status_code=404, detail=f"Output path does not exist: {output_path}.")
file_path = output_path / "visualization_results.pdf"
@@ -858,34 +859,35 @@ def site_map() -> RedirectResponse:
# Keep the proxy last to handle all requests that are not taken by the Rest API.
if config_eos.server.startup_eosdash:
@app.delete("/{path:path}", include_in_schema=False)
async def proxy_delete(request: Request, path: str) -> Response:
return await proxy(request, path)
@app.get("/{path:path}", include_in_schema=False)
async def proxy_get(request: Request, path: str) -> Response:
return await proxy(request, path)
@app.post("/{path:path}", include_in_schema=False)
async def proxy_post(request: Request, path: str) -> Response:
return await proxy(request, path)
@app.put("/{path:path}", include_in_schema=False)
async def proxy_put(request: Request, path: str) -> Response:
return await proxy(request, path)
else:
@app.get("/", include_in_schema=False)
def root() -> RedirectResponse:
return RedirectResponse(url="/docs")
async def proxy(request: Request, path: str) -> Union[Response | RedirectResponse | HTMLResponse]:
if config_eos.server.eosdash_host and config_eos.server.eosdash_port:
# Make hostname Windows friendly
host = str(config_eos.server_eosdash_host)
if host == "0.0.0.0" and os.name == "nt":
host = "localhost"
if host and config_eos.server_eosdash_port:
# Proxy to EOSdash server
url = f"http://{config_eos.server.eosdash_host}:{config_eos.server.eosdash_port}/{path}"
url = f"http://{host}:{config_eos.server_eosdash_port}/{path}"
headers = dict(request.headers)
data = await request.body()
@@ -907,9 +909,9 @@ async def proxy(request: Request, path: str) -> Union[Response | RedirectRespons
error_message=f"""<pre>
EOSdash server not reachable: '{url}'
Did you start the EOSdash server
or set 'startup_eosdash'?
or set 'server_eos_startup_eosdash'?
If there is no application server intended please
set 'eosdash_host' or 'eosdash_port' to None.
set 'server_eosdash_host' or 'server_eosdash_port' to None.
</pre>
""",
error_details=f"{e}",
@@ -973,8 +975,8 @@ def main() -> None:
it starts the EOS server with the specified configurations.
Command-line Arguments:
--host (str): Host for the EOS server (default: value from config).
--port (int): Port for the EOS server (default: value from config).
--host (str): Host for the EOS server (default: value from config_eos).
--port (int): Port for the EOS server (default: value from config_eos).
--log_level (str): Log level for the server. Options: "critical", "error", "warning", "info", "debug", "trace" (default: "info").
--access_log (bool): Enable or disable access log. Options: True or False (default: False).
--reload (bool): Enable or disable auto-reload. Useful for development. Options: True or False (default: False).
@@ -985,14 +987,14 @@ def main() -> None:
parser.add_argument(
"--host",
type=str,
default=str(config_eos.server.host),
help="Host for the EOS server (default: value from config)",
default=str(config_eos.server_eos_host),
help="Host for the EOS server (default: value from config_eos)",
)
parser.add_argument(
"--port",
type=int,
default=config_eos.server.port,
help="Port for the EOS server (default: value from config)",
default=config_eos.server_eos_port,
help="Port for the EOS server (default: value from config_eos)",
)
# Optional arguments for log_level, access_log, and reload
@@ -1020,7 +1022,7 @@ def main() -> None:
try:
run_eos(args.host, args.port, args.log_level, args.access_log, args.reload)
except:
sys.exit(1)
exit(1)
if __name__ == "__main__":

View File

@@ -1,17 +1,11 @@
import argparse
import os
import sys
from functools import reduce
from typing import Any, Union
import uvicorn
from fasthtml.common import H1, Table, Td, Th, Thead, Titled, Tr, fast_app
from pydantic.fields import ComputedFieldInfo, FieldInfo
from pydantic_core import PydanticUndefined
from fasthtml.common import H1, FastHTML, Table, Td, Th, Thead, Titled, Tr
from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel
logger = get_logger(__name__)
@@ -20,84 +14,18 @@ config_eos = get_config()
# Command line arguments
args = None
def get_default_value(field_info: Union[FieldInfo, ComputedFieldInfo], regular_field: bool) -> Any:
default_value = ""
if regular_field:
if (val := field_info.default) is not PydanticUndefined:
default_value = val
else:
default_value = "N/A"
return default_value
def resolve_nested_types(field_type: Any, parent_types: list[str]) -> list[tuple[Any, list[str]]]:
resolved_types: list[tuple[Any, list[str]]] = []
origin = getattr(field_type, "__origin__", field_type)
if origin is Union:
for arg in getattr(field_type, "__args__", []):
if arg is not type(None):
resolved_types.extend(resolve_nested_types(arg, parent_types))
else:
resolved_types.append((field_type, parent_types))
return resolved_types
configs = []
inner_types: set[type[PydanticBaseModel]] = set()
for field_name, field_info in list(config_eos.model_fields.items()) + list(
config_eos.model_computed_fields.items()
):
def extract_nested_models(
subfield_info: Union[ComputedFieldInfo, FieldInfo], parent_types: list[str]
) -> None:
regular_field = isinstance(subfield_info, FieldInfo)
subtype = subfield_info.annotation if regular_field else subfield_info.return_type
if subtype in inner_types:
return
nested_types = resolve_nested_types(subtype, [])
found_basic = False
for nested_type, nested_parent_types in nested_types:
if not isinstance(nested_type, type) or not issubclass(nested_type, PydanticBaseModel):
if found_basic:
continue
for field_name in config_eos.model_fields:
config = {}
config["name"] = ".".join(parent_types)
try:
config["value"] = reduce(getattr, [config_eos] + parent_types)
except AttributeError:
# Parent value(s) are not set in current config
config["value"] = ""
config["default"] = get_default_value(subfield_info, regular_field)
config["description"] = (
subfield_info.description if subfield_info.description else ""
)
config["name"] = field_name
config["value"] = getattr(config_eos, field_name)
config["default"] = config_eos.model_fields[field_name].default
config["description"] = config_eos.model_fields[field_name].description
configs.append(config)
found_basic = True
else:
new_parent_types = parent_types + nested_parent_types
inner_types.add(nested_type)
for nested_field_name, nested_field_info in list(
nested_type.model_fields.items()
) + list(nested_type.model_computed_fields.items()):
extract_nested_models(
nested_field_info,
new_parent_types + [nested_field_name],
)
extract_nested_models(field_info, [field_name])
configs = sorted(configs, key=lambda x: x["name"])
app, rt = fast_app(
secret_key=os.getenv("EOS_SERVER__EOSDASH_SESSKEY"),
)
app = FastHTML(secret_key=os.getenv("EOS_SERVER__EOSDASH_SESSKEY"))
rt = app.route
def config_table() -> Table:
@@ -168,10 +96,10 @@ def main() -> None:
it starts the EOSdash server with the specified configurations.
Command-line Arguments:
--host (str): Host for the EOSdash server (default: value from config).
--port (int): Port for the EOSdash server (default: value from config).
--eos-host (str): Host for the EOS server (default: value from config).
--eos-port (int): Port for the EOS server (default: value from config).
--host (str): Host for the EOSdash server (default: value from config_eos).
--port (int): Port for the EOSdash server (default: value from config_eos).
--eos-host (str): Host for the EOS server (default: value from config_eos).
--eos-port (int): Port for the EOS server (default: value from config_eos).
--log_level (str): Log level for the server. Options: "critical", "error", "warning", "info", "debug", "trace" (default: "info").
--access_log (bool): Enable or disable access log. Options: True or False (default: False).
--reload (bool): Enable or disable auto-reload. Useful for development. Options: True or False (default: False).
@@ -182,28 +110,28 @@ def main() -> None:
parser.add_argument(
"--host",
type=str,
default=str(config_eos.server.eosdash_host),
help="Host for the EOSdash server (default: value from config)",
default=str(config_eos.server_eosdash_host),
help="Host for the EOSdash server (default: value from config_eos)",
)
parser.add_argument(
"--port",
type=int,
default=config_eos.server.eosdash_port,
help="Port for the EOSdash server (default: value from config)",
default=config_eos.server_eosdash_port,
help="Port for the EOSdash server (default: value from config_eos)",
)
# EOS Host and port arguments with defaults from config_eos
parser.add_argument(
"--eos-host",
type=str,
default=str(config_eos.server.host),
help="Host for the EOS server (default: value from config)",
default=str(config_eos.server_eos_host),
help="Host for the EOS server (default: value from config_eos)",
)
parser.add_argument(
"--eos-port",
type=int,
default=config_eos.server.port,
help="Port for the EOS server (default: value from config)",
default=config_eos.server_eos_port,
help="Port for the EOS server (default: value from config_eos)",
)
# Optional arguments for log_level, access_log, and reload
@@ -231,7 +159,7 @@ def main() -> None:
try:
run_eosdash(args.host, args.port, args.log_level, args.access_log, args.reload)
except:
sys.exit(1)
exit(1)
if __name__ == "__main__":

View File

@@ -1,5 +1,6 @@
"""Server Module."""
import os
from typing import Optional
from pydantic import Field, IPvAnyAddress, field_validator
@@ -10,25 +11,35 @@ from akkudoktoreos.core.logging import get_logger
logger = get_logger(__name__)
def get_default_host() -> str:
if os.name == "nt":
return "127.0.0.1"
return "0.0.0.0"
class ServerCommonSettings(SettingsBaseModel):
"""Server Configuration.
"""Common server settings.
Attributes:
To be added
"""
host: Optional[IPvAnyAddress] = Field(default="0.0.0.0", description="EOS server IP address.")
port: Optional[int] = Field(default=8503, description="EOS server IP port number.")
verbose: Optional[bool] = Field(default=False, description="Enable debug output")
startup_eosdash: Optional[bool] = Field(
server_eos_host: Optional[IPvAnyAddress] = Field(
default=get_default_host(), description="EOS server IP address."
)
server_eos_port: Optional[int] = Field(default=8503, description="EOS server IP port number.")
server_eos_verbose: Optional[bool] = Field(default=False, description="Enable debug output")
server_eos_startup_eosdash: Optional[bool] = Field(
default=True, description="EOS server to start EOSdash server."
)
eosdash_host: Optional[IPvAnyAddress] = Field(
default="0.0.0.0", description="EOSdash server IP address."
server_eosdash_host: Optional[IPvAnyAddress] = Field(
default=get_default_host(), description="EOSdash server IP address."
)
server_eosdash_port: Optional[int] = Field(
default=8504, description="EOSdash server IP port number."
)
eosdash_port: Optional[int] = Field(default=8504, description="EOSdash server IP port number.")
@field_validator("port", "eosdash_port")
@field_validator("server_eos_port", "server_eosdash_port")
def validate_server_port(cls, value: Optional[int]) -> Optional[int]:
if value is not None and not (1024 <= value <= 49151):
raise ValueError("Server port number must be between 1024 and 49151.")

View File

@@ -329,9 +329,9 @@ class CacheFileStore(ConfigMixin, metaclass=CacheFileStoreMeta):
# File already available
cache_file_obj = cache_item.cache_file
else:
self.config.general.data_cache_path.mkdir(parents=True, exist_ok=True)
self.config.data_cache_path.mkdir(parents=True, exist_ok=True)
cache_file_obj = tempfile.NamedTemporaryFile(
mode=mode, delete=delete, suffix=suffix, dir=self.config.general.data_cache_path
mode=mode, delete=delete, suffix=suffix, dir=self.config.data_cache_path
)
self._store[cache_file_key] = CacheFileRecord(
cache_file=cache_file_obj,

View File

@@ -1,42 +0,0 @@
from typing import Any
from pydantic.fields import FieldInfo
from akkudoktoreos.core.pydantic import PydanticBaseModel
def get_example_or_default(field_name: str, field_info: FieldInfo, example_ix: int) -> Any:
"""Generate a default value for a field, considering constraints."""
if field_info.examples is not None:
try:
return field_info.examples[example_ix]
except IndexError:
return field_info.examples[-1]
if field_info.default is not None:
return field_info.default
raise NotImplementedError(f"No default or example provided '{field_name}': {field_info}")
def get_model_structure_from_examples(
model_class: type[PydanticBaseModel], multiple: bool
) -> list[dict[str, Any]]:
"""Create a model instance with default or example values, respecting constraints."""
example_max_length = 1
# Get first field with examples (non-default) to get example_max_length
if multiple:
for _, field_info in model_class.model_fields.items():
if field_info.examples is not None:
example_max_length = len(field_info.examples)
break
example_data: list[dict[str, Any]] = [{} for _ in range(example_max_length)]
for field_name, field_info in model_class.model_fields.items():
for example_ix in range(example_max_length):
example_data[example_ix][field_name] = get_example_or_default(
field_name, field_info, example_ix
)
return example_data

View File

@@ -10,8 +10,6 @@ logger = get_logger(__name__)
class UtilsCommonSettings(SettingsBaseModel):
"""Utils Configuration."""
pass
@@ -49,6 +47,6 @@ class NumpyEncoder(json.JSONEncoder):
# # Example usage
# start_date = datetime.datetime(2024, 3, 31) # Date of the DST change
# if ist_dst_wechsel(start_date):
# hours = 23 # Adjust to 23 hours for DST change days
# prediction_hours = 23 # Adjust to 23 hours for DST change days
# else:
# hours = 24 # Default value for days without DST change
# prediction_hours = 24 # Default value for days without DST change

View File

@@ -13,6 +13,7 @@ import pendulum
from matplotlib.backends.backend_pdf import PdfPages
from akkudoktoreos.core.coreabc import ConfigMixin
from akkudoktoreos.core.ems import EnergieManagementSystem
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.optimization.genetic import OptimizationParameters
from akkudoktoreos.utils.datetimeutil import to_datetime
@@ -24,12 +25,7 @@ matplotlib.use(
class VisualizationReport(ConfigMixin):
def __init__(
self,
filename: str = "visualization_results.pdf",
version: str = "0.0.1",
create_img: bool = True,
) -> None:
def __init__(self, filename: str = "visualization_results.pdf", version: str = "0.0.1") -> None:
# Initialize the report with a given filename and empty groups
self.filename = filename
self.groups: list[list[Callable[[], None]]] = [] # Store groups of charts
@@ -39,23 +35,12 @@ class VisualizationReport(ConfigMixin):
self.pdf_pages = PdfPages(filename, metadata={}) # Initialize PdfPages without metadata
self.version = version # overwrite version as test for constant output of pdf for test
self.current_time = to_datetime(
as_string="YYYY-MM-DD HH:mm:ss", in_timezone=self.config.general.timezone
as_string="YYYY-MM-DD HH:mm:ss", in_timezone=self.config.timezone
)
self.create_img = create_img
def add_chart_to_group(self, chart_func: Callable[[], None], title: str | None) -> None:
"""Add a chart function to the current group and save it as a PNG and SVG."""
def add_chart_to_group(self, chart_func: Callable[[], None]) -> None:
"""Add a chart function to the current group."""
self.current_group.append(chart_func)
if self.create_img and title:
server_output_dir = self.config.general.data_cache_path
server_output_dir.mkdir(parents=True, exist_ok=True)
fig, ax = plt.subplots()
chart_func()
plt.tight_layout() # Adjust the layout to ensure titles are not cut off
sanitized_title = "".join(c if c.isalnum() else "_" for c in title)
chart_filename_base = os.path.join(server_output_dir, f"chart_{sanitized_title}")
fig.savefig(f"{chart_filename_base}.svg")
plt.close(fig)
def finalize_group(self) -> None:
"""Finalize the current group and prepare for a new group."""
@@ -67,7 +52,7 @@ class VisualizationReport(ConfigMixin):
def _initialize_pdf(self) -> None:
"""Create the output directory if it doesn't exist and initialize the PDF."""
output_dir = self.config.general.data_output_path
output_dir = self.config.data_output_path
# If self.filename is already a valid path, use it; otherwise, combine it with output_dir
if os.path.isabs(self.filename):
@@ -163,14 +148,16 @@ class VisualizationReport(ConfigMixin):
# Format the time axis
plt.gca().xaxis.set_major_formatter(
mdates.DateFormatter("%Y-%m-%d")
mdates.DateFormatter("%Y-%m-%d", tz=self.config.timezone)
) # Show date and time
plt.gca().xaxis.set_major_locator(
mdates.DayLocator(interval=1, tz=None)
mdates.DayLocator(interval=1, tz=self.config.timezone)
) # Major ticks every day
plt.gca().xaxis.set_minor_locator(mdates.HourLocator(interval=3, tz=None))
plt.gca().xaxis.set_minor_locator(
mdates.HourLocator(interval=2, tz=self.config.timezone)
)
# Minor ticks every 6 hours
plt.gca().xaxis.set_minor_formatter(mdates.DateFormatter("%H"))
plt.gca().xaxis.set_minor_formatter(mdates.DateFormatter("%H", tz=self.config.timezone))
# plt.gcf().autofmt_xdate(rotation=45, which="major")
# Auto-format the x-axis for readability
@@ -189,7 +176,8 @@ class VisualizationReport(ConfigMixin):
plt.grid(True)
# Add vertical line for the current date if within the axis range
current_time = pendulum.now(self.config.general.timezone)
current_time = pendulum.now(self.config.timezone)
# current_time = pendulum.now().add(hours=1)
if timestamps[0].subtract(hours=2) <= current_time <= timestamps[-1]:
plt.axvline(current_time, color="r", linestyle="--", label="Now")
plt.text(current_time, plt.ylim()[1], "Now", color="r", ha="center", va="bottom")
@@ -203,15 +191,17 @@ class VisualizationReport(ConfigMixin):
hours_since_start = [(t - timestamps[0]).total_seconds() / 3600 for t in timestamps]
# ax2.set_xticks(timestamps[::48]) # Set ticks every 12 hours
# ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[::48]])
ax2.set_xticks(timestamps[:: len(timestamps) // 24]) # Select 10 evenly spaced ticks
ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[:: len(timestamps) // 24]])
# ax2.set_xticks(timestamps[:: len(timestamps) // 24]) # Select 10 evenly spaced ticks
ax2.set_xticks(timestamps[:: len(timestamps) // 12]) # Select 10 evenly spaced ticks
# ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[:: len(timestamps) // 24]])
ax2.set_xticklabels([f"{int(h)}" for h in hours_since_start[:: len(timestamps) // 12]])
if x2label:
ax2.set_xlabel(x2label)
# Ensure ax1 and ax2 are aligned
# assert ax1.get_xlim() == ax2.get_xlim(), "ax1 and ax2 are not aligned"
self.add_chart_to_group(chart, title) # Add chart function to current group
self.add_chart_to_group(chart) # Add chart function to current group
def create_line_chart(
self,
@@ -272,7 +262,7 @@ class VisualizationReport(ConfigMixin):
plt.grid(True) # Show grid
plt.xlim(x[0] - 0.5, x[-1] + 0.5) # Adjust x-limits
self.add_chart_to_group(chart, title) # Add chart function to current group
self.add_chart_to_group(chart) # Add chart function to current group
def create_scatter_plot(
self,
@@ -294,7 +284,7 @@ class VisualizationReport(ConfigMixin):
plt.colorbar(scatter, label="Constraint") # Add colorbar if color data is provided
plt.grid(True) # Show grid
self.add_chart_to_group(chart, title) # Add chart function to current group
self.add_chart_to_group(chart) # Add chart function to current group
def create_bar_chart(
self,
@@ -344,7 +334,7 @@ class VisualizationReport(ConfigMixin):
plt.grid(True, zorder=0) # Show grid in the background
plt.xlim(-0.5, len(labels) - 0.5) # Set x-axis limits
self.add_chart_to_group(chart, title) # Add chart function to current group
self.add_chart_to_group(chart) # Add chart function to current group
def create_violin_plot(
self, data_list: list[np.ndarray], labels: list[str], title: str, xlabel: str, ylabel: str
@@ -359,7 +349,7 @@ class VisualizationReport(ConfigMixin):
plt.ylabel(ylabel) # Set y-axis label
plt.grid(True) # Show grid
self.add_chart_to_group(chart, title) # Add chart function to current group
self.add_chart_to_group(chart) # Add chart function to current group
def add_text_page(self, text: str, title: Optional[str] = None, fontsize: int = 12) -> None:
"""Add a page with text content to the PDF."""
@@ -378,7 +368,7 @@ class VisualizationReport(ConfigMixin):
self.pdf_pages.savefig(fig) # Save the figure as a page in the PDF
plt.close(fig) # Close the figure to free up memory
self.add_chart_to_group(chart, title) # Treat the text page as a "chart" in the group
self.add_chart_to_group(chart) # Treat the text page as a "chart" in the group
def add_json_page(
self, json_obj: dict, title: Optional[str] = None, fontsize: int = 12
@@ -416,7 +406,7 @@ class VisualizationReport(ConfigMixin):
self.pdf_pages.savefig(fig) # Save the figure as a page in the PDF
plt.close(fig) # Close the figure to free up memory
self.add_chart_to_group(chart, title) # Treat the JSON page as a "chart" in the group
self.add_chart_to_group(chart) # Treat the JSON page as a "chart" in the group
def generate_pdf(self) -> None:
"""Generate the PDF report with all the added chart groups."""
@@ -432,15 +422,17 @@ def prepare_visualize(
parameters: OptimizationParameters,
results: dict,
filename: str = "visualization_results.pdf",
start_hour: Optional[int] = 0,
start_hour: int = 0,
) -> None:
report = VisualizationReport(filename)
next_full_hour_date = pendulum.now(report.config.general.timezone).start_of("hour").add(hours=1)
# next_full_hour_date = pendulum.now(report.config.timezone).start_of("day").add(hours=start_hour)
# next_full_hour_date = to_datetime().set(minute=0, second=0, microsecond=0)
next_full_hour_date = EnergieManagementSystem.set_start_datetime()
# Group 1:
report.create_line_chart_date(
next_full_hour_date, # start_date
next_full_hour_date,
[
parameters.ems.gesamtlast,
parameters.ems.gesamtlast[start_hour:],
],
title="Load Profile",
# xlabel="Hours", # not enough space
@@ -448,9 +440,9 @@ def prepare_visualize(
labels=["Total Load (Wh)"],
)
report.create_line_chart_date(
next_full_hour_date, # start_date
next_full_hour_date,
[
parameters.ems.pv_prognose_wh,
parameters.ems.pv_prognose_wh[start_hour:],
],
title="PV Forecast",
# xlabel="Hours", # not enough space
@@ -458,8 +450,15 @@ def prepare_visualize(
)
report.create_line_chart_date(
next_full_hour_date, # start_date
[np.full(len(parameters.ems.gesamtlast), parameters.ems.einspeiseverguetung_euro_pro_wh)],
next_full_hour_date,
[
np.full(
len(parameters.ems.gesamtlast) - start_hour,
parameters.ems.einspeiseverguetung_euro_pro_wh[start_hour:]
if isinstance(parameters.ems.einspeiseverguetung_euro_pro_wh, list)
else parameters.ems.einspeiseverguetung_euro_pro_wh,
)
],
title="Remuneration",
# xlabel="Hours", # not enough space
ylabel="€/Wh",
@@ -467,9 +466,9 @@ def prepare_visualize(
)
if parameters.temperature_forecast:
report.create_line_chart_date(
next_full_hour_date, # start_date
next_full_hour_date,
[
parameters.temperature_forecast,
parameters.temperature_forecast[start_hour:],
],
title="Temperature Forecast",
# xlabel="Hours", # not enough space
@@ -518,21 +517,35 @@ def prepare_visualize(
)
report.create_line_chart_date(
next_full_hour_date, # start_date
[parameters.ems.strompreis_euro_pro_wh],
title="Electricity Price",
[parameters.ems.strompreis_euro_pro_wh[start_hour:]],
# title="Electricity Price", # not enough space
# xlabel="Date", # not enough space
ylabel="Electricity Price (€/Wh)",
x2label=None, # not enough space
)
labels = list(
item
for sublist in zip(
list(str(i) for i in range(0, 23, 2)), list(str(" ") for i in range(0, 23, 2))
)
for item in sublist
)
labels = labels[start_hour:] + labels
report.create_bar_chart(
list(str(i) for i in range(len(results["ac_charge"]))),
[results["ac_charge"], results["dc_charge"], results["discharge_allowed"]],
labels,
[
results["ac_charge"][start_hour:],
results["dc_charge"][start_hour:],
results["discharge_allowed"][start_hour:],
],
title="AC/DC Charging and Discharge Overview",
ylabel="Relative Power (0-1) / Discharge (0 or 1)",
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
colors=["blue", "green", "red"],
bottom=3,
xlabels=labels,
)
report.finalize_group()
@@ -554,7 +567,7 @@ def prepare_visualize(
report.create_scatter_plot(
extra_data["verluste"],
extra_data["bilanz"],
title="Scatter Plot",
title="",
xlabel="losses",
ylabel="balance",
c=extra_data["nebenbedingung"],

View File

@@ -64,25 +64,6 @@ def config_mixin(config_eos):
yield config_mixin_patch
@pytest.fixture
def devices_eos(config_mixin):
from akkudoktoreos.devices.devices import get_devices
devices = get_devices()
print("devices_eos reset!")
devices.reset()
return devices
@pytest.fixture
def devices_mixin(devices_eos):
with patch(
"akkudoktoreos.core.coreabc.DevicesMixin.devices", new_callable=PropertyMock
) as devices_mixin_patch:
devices_mixin_patch.return_value = devices_eos
yield devices_mixin_patch
# Test if test has side effect of writing to system (user) config file
# Before activating, make sure that no user config file exists (e.g. ~/.config/net.akkudoktoreos.eos/EOS.config.json)
@pytest.fixture(autouse=True)
@@ -133,24 +114,20 @@ def config_eos(
monkeypatch,
) -> ConfigEOS:
"""Fixture to reset EOS config to default values."""
monkeypatch.setenv(
"EOS_CONFIG__DATA_CACHE_SUBPATH", str(config_default_dirs[-1] / "data/cache")
)
monkeypatch.setenv(
"EOS_CONFIG__DATA_OUTPUT_SUBPATH", str(config_default_dirs[-1] / "data/output")
)
monkeypatch.setenv("data_cache_subpath", str(config_default_dirs[-1] / "data/cache"))
monkeypatch.setenv("data_output_subpath", str(config_default_dirs[-1] / "data/output"))
config_file = config_default_dirs[0] / ConfigEOS.CONFIG_FILE_NAME
config_file_cwd = config_default_dirs[1] / ConfigEOS.CONFIG_FILE_NAME
assert not config_file.exists()
assert not config_file_cwd.exists()
config_eos = get_config()
config_eos.reset_settings()
assert config_file == config_eos.general.config_file_path
assert config_file == config_eos.config_file_path
assert config_file.exists()
assert not config_file_cwd.exists()
assert config_default_dirs[-1] / "data" == config_eos.general.data_folder_path
assert config_default_dirs[-1] / "data/cache" == config_eos.general.data_cache_path
assert config_default_dirs[-1] / "data/output" == config_eos.general.data_output_path
assert config_default_dirs[-1] / "data" == config_eos.data_folder_path
assert config_default_dirs[-1] / "data/cache" == config_eos.data_cache_path
assert config_default_dirs[-1] / "data/output" == config_eos.data_output_path
return config_eos
@@ -189,7 +166,6 @@ def server(xprocess, config_eos, config_default_dirs):
# Set environment before any subprocess run, to keep custom config dir
env = os.environ.copy()
env["EOS_DIR"] = str(config_default_dirs[-1])
project_dir = config_eos.package_root_path
# assure server to be installed
try:
@@ -199,9 +175,9 @@ def server(xprocess, config_eos, config_default_dirs):
env=env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
cwd=project_dir,
)
except subprocess.CalledProcessError:
project_dir = config_eos.package_root_path
subprocess.run(
[sys.executable, "-m", "pip", "install", "-e", project_dir],
check=True,

View File

@@ -7,15 +7,13 @@ from akkudoktoreos.devices.battery import Battery, SolarPanelBatteryParameters
@pytest.fixture
def setup_pv_battery():
params = SolarPanelBatteryParameters(
device_id="battery1",
capacity_wh=10000,
initial_soc_percentage=50,
min_soc_percentage=20,
max_soc_percentage=80,
max_charge_power_w=8000,
hours=24,
)
battery = Battery(params)
battery = Battery(params, hours=24)
battery.reset()
return battery
@@ -115,6 +113,7 @@ def test_soc_limits(setup_pv_battery):
def test_max_charge_power_w(setup_pv_battery):
battery = setup_pv_battery
battery.setup()
assert (
battery.parameters.max_charge_power_w == 8000
), "Default max charge power should be 5000W, We ask for 8000W here"
@@ -122,6 +121,7 @@ def test_max_charge_power_w(setup_pv_battery):
def test_charge_energy_within_limits(setup_pv_battery):
battery = setup_pv_battery
battery.setup()
initial_soc_wh = battery.soc_wh
charged_wh, losses_wh = battery.charge_energy(wh=4000, hour=1)
@@ -134,6 +134,7 @@ def test_charge_energy_within_limits(setup_pv_battery):
def test_charge_energy_exceeds_capacity(setup_pv_battery):
battery = setup_pv_battery
battery.setup()
initial_soc_wh = battery.soc_wh
# Try to overcharge beyond max capacity
@@ -148,6 +149,7 @@ def test_charge_energy_exceeds_capacity(setup_pv_battery):
def test_charge_energy_not_allowed_hour(setup_pv_battery):
battery = setup_pv_battery
battery.setup()
# Disable charging for all hours
battery.set_charge_per_hour(np.zeros(battery.hours))
@@ -163,6 +165,7 @@ def test_charge_energy_not_allowed_hour(setup_pv_battery):
def test_charge_energy_relative_power(setup_pv_battery):
battery = setup_pv_battery
battery.setup()
relative_power = 0.5 # 50% of max charge power
charged_wh, losses_wh = battery.charge_energy(wh=None, hour=4, relative_power=relative_power)
@@ -180,15 +183,13 @@ def setup_car_battery():
from akkudoktoreos.devices.battery import ElectricVehicleParameters
params = ElectricVehicleParameters(
device_id="ev1",
capacity_wh=40000,
initial_soc_percentage=60,
min_soc_percentage=10,
max_soc_percentage=90,
max_charge_power_w=7000,
hours=24,
)
battery = Battery(params)
battery = Battery(params, hours=24)
battery.reset()
return battery

View File

@@ -1,3 +1,5 @@
from pathlib import Path
import numpy as np
import pytest
@@ -14,58 +16,58 @@ from akkudoktoreos.devices.battery import (
)
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Inverter, InverterParameters
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
start_hour = 1
# Example initialization of necessary components
@pytest.fixture
def create_ems_instance(devices_eos, config_eos) -> EnergieManagementSystem:
def create_ems_instance(config_eos) -> EnergieManagementSystem:
"""Fixture to create an EnergieManagementSystem instance with given test parameters."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
)
assert config_eos.prediction.hours == 48
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 24})
assert config_eos.prediction_hours is not None
# Initialize the battery and the inverter
akku = Battery(
SolarPanelBatteryParameters(
device_id="battery1",
capacity_wh=5000,
initial_soc_percentage=80,
min_soc_percentage=10,
capacity_wh=5000, initial_soc_percentage=80, min_soc_percentage=10
),
hours=config_eos.prediction_hours,
)
)
akku.reset()
devices_eos.add_device(akku)
inverter = Inverter(
InverterParameters(device_id="inverter1", max_power_wh=10000, battery_id=akku.device_id)
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
sc = SelfConsumptionProbabilityInterpolator(
Path(__file__).parent.resolve()
/ ".."
/ "src"
/ "akkudoktoreos"
/ "data"
/ "regular_grid_interpolator.pkl"
)
devices_eos.add_device(inverter)
akku.reset()
inverter = Inverter(sc, InverterParameters(max_power_wh=10000), akku)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
device_id="dishwasher1",
consumption_wh=2000,
duration_h=2,
),
hours=config_eos.prediction_hours,
)
home_appliance.set_starting_time(2)
devices_eos.add_device(home_appliance)
# Example initialization of electric car battery
eauto = Battery(
ElectricVehicleParameters(
device_id="ev1", capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
capacity_wh=26400, initial_soc_percentage=10, min_soc_percentage=10
),
hours=config_eos.prediction_hours,
)
eauto.set_charge_per_hour(np.full(config_eos.prediction.hours, 1))
devices_eos.add_device(eauto)
devices_eos.post_setup()
eauto.set_charge_per_hour(np.full(config_eos.prediction_hours, 1))
# Parameters based on previous example data
pv_prognose_wh = [

View File

@@ -1,3 +1,5 @@
from pathlib import Path
import numpy as np
import pytest
@@ -14,61 +16,64 @@ from akkudoktoreos.devices.battery import (
)
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
from akkudoktoreos.devices.inverter import Inverter, InverterParameters
from akkudoktoreos.prediction.interpolator import SelfConsumptionProbabilityInterpolator
start_hour = 0
# Example initialization of necessary components
@pytest.fixture
def create_ems_instance(devices_eos, config_eos) -> EnergieManagementSystem:
def create_ems_instance(config_eos) -> EnergieManagementSystem:
"""Fixture to create an EnergieManagementSystem instance with given test parameters."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 24}}
)
assert config_eos.prediction.hours == 48
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 24})
assert config_eos.prediction_hours is not None
# Initialize the battery and the inverter
akku = Battery(
SolarPanelBatteryParameters(
device_id="pv1", capacity_wh=5000, initial_soc_percentage=80, min_soc_percentage=10
capacity_wh=5000, initial_soc_percentage=80, min_soc_percentage=10
),
hours=config_eos.prediction_hours,
)
)
akku.reset()
devices_eos.add_device(akku)
inverter = Inverter(
InverterParameters(device_id="iv1", max_power_wh=10000, battery_id=akku.device_id)
# 1h Load to Sub 1h Load Distribution -> SelfConsumptionRate
sc = SelfConsumptionProbabilityInterpolator(
Path(__file__).parent.resolve()
/ ".."
/ "src"
/ "akkudoktoreos"
/ "data"
/ "regular_grid_interpolator.pkl"
)
devices_eos.add_device(inverter)
akku.reset()
inverter = Inverter(sc, InverterParameters(max_power_wh=10000), akku)
# Household device (currently not used, set to None)
home_appliance = HomeAppliance(
HomeApplianceParameters(
device_id="dishwasher1",
consumption_wh=2000,
duration_h=2,
)
),
hours=config_eos.prediction_hours,
)
home_appliance.set_starting_time(2)
devices_eos.add_device(home_appliance)
# Example initialization of electric car battery
eauto = Battery(
ElectricVehicleParameters(
device_id="ev1", capacity_wh=26400, initial_soc_percentage=100, min_soc_percentage=100
capacity_wh=26400, initial_soc_percentage=100, min_soc_percentage=100
),
hours=config_eos.prediction_hours,
)
devices_eos.add_device(eauto)
devices_eos.post_setup()
# Parameters based on previous example data
pv_prognose_wh = [0.0] * config_eos.prediction.hours
pv_prognose_wh = [0.0] * config_eos.prediction_hours
pv_prognose_wh[10] = 5000.0
pv_prognose_wh[11] = 5000.0
strompreis_euro_pro_wh = [0.001] * config_eos.prediction.hours
strompreis_euro_pro_wh = [0.001] * config_eos.prediction_hours
strompreis_euro_pro_wh[0:10] = [0.00001] * 10
strompreis_euro_pro_wh[11:15] = [0.00005] * 4
strompreis_euro_pro_wh[20] = 0.00001
@@ -142,10 +147,10 @@ def create_ems_instance(devices_eos, config_eos) -> EnergieManagementSystem:
home_appliance=home_appliance,
)
ac = np.full(config_eos.prediction.hours, 0.0)
ac = np.full(config_eos.prediction_hours, 0.0)
ac[20] = 1
ems.set_akku_ac_charge_hours(ac)
dc = np.full(config_eos.prediction.hours, 0.0)
dc = np.full(config_eos.prediction_hours, 0.0)
dc[11] = 1
ems.set_akku_dc_charge_hours(dc)
@@ -269,7 +274,7 @@ def test_set_parameters(create_ems_instance):
def test_set_akku_discharge_hours(create_ems_instance):
"""Test the set_akku_discharge_hours method of EnergieManagementSystem."""
ems = create_ems_instance
discharge_hours = np.full(ems.config.prediction.hours, 1.0)
discharge_hours = np.full(ems.config.prediction_hours, 1.0)
ems.set_akku_discharge_hours(discharge_hours)
assert np.array_equal(
ems.battery.discharge_array, discharge_hours
@@ -279,7 +284,7 @@ def test_set_akku_discharge_hours(create_ems_instance):
def test_set_akku_ac_charge_hours(create_ems_instance):
"""Test the set_akku_ac_charge_hours method of EnergieManagementSystem."""
ems = create_ems_instance
ac_charge_hours = np.full(ems.config.prediction.hours, 1.0)
ac_charge_hours = np.full(ems.config.prediction_hours, 1.0)
ems.set_akku_ac_charge_hours(ac_charge_hours)
assert np.array_equal(
ems.ac_charge_hours, ac_charge_hours
@@ -289,7 +294,7 @@ def test_set_akku_ac_charge_hours(create_ems_instance):
def test_set_akku_dc_charge_hours(create_ems_instance):
"""Test the set_akku_dc_charge_hours method of EnergieManagementSystem."""
ems = create_ems_instance
dc_charge_hours = np.full(ems.config.prediction.hours, 1.0)
dc_charge_hours = np.full(ems.config.prediction_hours, 1.0)
ems.set_akku_dc_charge_hours(dc_charge_hours)
assert np.array_equal(
ems.dc_charge_hours, dc_charge_hours
@@ -299,7 +304,7 @@ def test_set_akku_dc_charge_hours(create_ems_instance):
def test_set_ev_charge_hours(create_ems_instance):
"""Test the set_ev_charge_hours method of EnergieManagementSystem."""
ems = create_ems_instance
ev_charge_hours = np.full(ems.config.prediction.hours, 1.0)
ev_charge_hours = np.full(ems.config.prediction_hours, 1.0)
ems.set_ev_charge_hours(ev_charge_hours)
assert np.array_equal(
ems.ev_charge_hours, ev_charge_hours

View File

@@ -49,9 +49,7 @@ def test_optimize(
):
"""Test optimierung_ems."""
# Assure configuration holds the correct values
config_eos.merge_settings_from_dict(
{"prediction": {"hours": 48}, "optimization": {"hours": 48}}
)
config_eos.merge_settings_from_dict({"prediction_hours": 48, "optimization_hours": 48})
# Load input and output data
file = DIR_TESTDATA / fn_in

View File

@@ -3,9 +3,8 @@ from pathlib import Path
from unittest.mock import patch
import pytest
from pydantic import ValidationError
from akkudoktoreos.config.config import ConfigEOS, GeneralSettings
from akkudoktoreos.config.config import ConfigEOS
from akkudoktoreos.core.logging import get_logger
logger = get_logger(__name__)
@@ -39,26 +38,22 @@ def test_config_constants(config_eos):
def test_computed_paths(config_eos):
"""Test computed paths for output and cache."""
# Don't actually try to create the data folder
with patch("pathlib.Path.mkdir"):
config_eos.merge_settings_from_dict(
{
"general": {
"data_folder_path": "/base/data",
"data_output_subpath": "extra/output",
"data_cache_subpath": "somewhere/cache",
}
"data_output_subpath": "output",
"data_cache_subpath": "cache",
}
)
assert config_eos.general.data_output_path == Path("/base/data/extra/output")
assert config_eos.general.data_cache_path == Path("/base/data/somewhere/cache")
assert config_eos.data_output_path == Path("/base/data/output")
assert config_eos.data_cache_path == Path("/base/data/cache")
# reset settings so the config_eos fixture can verify the default paths
config_eos.reset_settings()
def test_singleton_behavior(config_eos, config_default_dirs):
"""Test that ConfigEOS behaves as a singleton."""
initial_cfg_file = config_eos.general.config_file_path
initial_cfg_file = config_eos.config_file_path
with patch(
"akkudoktoreos.config.config.user_config_dir", return_value=str(config_default_dirs[0])
):
@@ -66,7 +61,7 @@ def test_singleton_behavior(config_eos, config_default_dirs):
instance2 = ConfigEOS()
assert instance1 is config_eos
assert instance1 is instance2
assert instance1.general.config_file_path == initial_cfg_file
assert instance1.config_file_path == initial_cfg_file
def test_default_config_path(config_eos, config_default_dirs):
@@ -87,13 +82,13 @@ def test_config_file_priority(config_default_dirs):
config_file = Path(config_default_dir_cwd) / ConfigEOS.CONFIG_FILE_NAME
config_file.write_text("{}")
config_eos = get_config()
assert config_eos.general.config_file_path == config_file
assert config_eos.config_file_path == config_file
config_file = Path(config_default_dir_user) / ConfigEOS.CONFIG_FILE_NAME
config_file.parent.mkdir()
config_file.write_text("{}")
config_eos.update()
assert config_eos.general.config_file_path == config_file
config_eos = get_config()
assert config_eos.config_file_path == config_file
@patch("akkudoktoreos.config.config.user_config_dir")
@@ -146,69 +141,5 @@ def test_config_copy(config_eos, monkeypatch):
assert not temp_config_file_path.exists()
with patch("akkudoktoreos.config.config.user_config_dir", return_value=temp_dir):
assert config_eos._get_config_file_path() == (temp_config_file_path, False)
config_eos.update()
config_eos.from_config_file()
assert temp_config_file_path.exists()
@pytest.mark.parametrize(
"latitude, longitude, expected_timezone",
[
(40.7128, -74.0060, "America/New_York"), # Valid latitude/longitude
(None, None, None), # No location
(51.5074, -0.1278, "Europe/London"), # Another valid location
],
)
def test_config_common_settings_valid(latitude, longitude, expected_timezone):
"""Test valid settings for GeneralSettings."""
general_settings = GeneralSettings(
latitude=latitude,
longitude=longitude,
)
assert general_settings.latitude == latitude
assert general_settings.longitude == longitude
assert general_settings.timezone == expected_timezone
@pytest.mark.parametrize(
"field_name, invalid_value, expected_error",
[
("latitude", -91.0, "Input should be greater than or equal to -90"),
("latitude", 91.0, "Input should be less than or equal to 90"),
("longitude", -181.0, "Input should be greater than or equal to -180"),
("longitude", 181.0, "Input should be less than or equal to 180"),
],
)
def test_config_common_settings_invalid(field_name, invalid_value, expected_error):
"""Test invalid settings for PredictionCommonSettings."""
valid_data = {
"latitude": 40.7128,
"longitude": -74.0060,
}
assert GeneralSettings(**valid_data) is not None
valid_data[field_name] = invalid_value
with pytest.raises(ValidationError, match=expected_error):
GeneralSettings(**valid_data)
def test_config_common_settings_no_location():
"""Test that timezone is None when latitude and longitude are not provided."""
settings = GeneralSettings(latitude=None, longitude=None)
assert settings.timezone is None
def test_config_common_settings_with_location():
"""Test that timezone is correctly computed when latitude and longitude are provided."""
settings = GeneralSettings(latitude=34.0522, longitude=-118.2437)
assert settings.timezone == "America/Los_Angeles"
def test_config_common_settings_timezone_none_when_coordinates_missing():
"""Test that timezone is None when latitude or longitude is missing."""
config_no_latitude = GeneralSettings(latitude=None, longitude=-74.0060)
config_no_longitude = GeneralSettings(latitude=40.7128, longitude=None)
config_no_coords = GeneralSettings(latitude=None, longitude=None)
assert config_no_latitude.timezone is None
assert config_no_longitude.timezone is None
assert config_no_coords.timezone is None

View File

@@ -86,7 +86,7 @@ def test_config_md_current(config_eos):
sys.path.insert(0, str(root_dir))
from scripts import generate_config_md
config_md = generate_config_md.generate_config_md(config_eos)
config_md = generate_config_md.generate_config_md()
with open(new_config_md_path, "w", encoding="utf8") as f_new:
f_new.write(config_md)

View File

@@ -23,10 +23,9 @@ FILE_TESTDATA_ELECPRICEAKKUDOKTOR_1_JSON = DIR_TESTDATA.joinpath(
@pytest.fixture
def provider(monkeypatch, config_eos):
def elecprice_provider(monkeypatch):
"""Fixture to create a ElecPriceProvider instance."""
monkeypatch.setenv("EOS_ELECPRICE__ELECPRICE_PROVIDER", "ElecPriceAkkudoktor")
config_eos.reset_settings()
monkeypatch.setenv("elecprice_provider", "ElecPriceAkkudoktor")
return ElecPriceAkkudoktor()
@@ -49,17 +48,17 @@ def cache_store():
# ------------------------------------------------
def test_singleton_instance(provider):
def test_singleton_instance(elecprice_provider):
"""Test that ElecPriceForecast behaves as a singleton."""
another_instance = ElecPriceAkkudoktor()
assert provider is another_instance
assert elecprice_provider is another_instance
def test_invalid_provider(provider, monkeypatch):
"""Test requesting an unsupported provider."""
monkeypatch.setenv("EOS_ELECPRICE__ELECPRICE_PROVIDER", "<invalid>")
provider.config.reset_settings()
assert not provider.enabled()
def test_invalid_provider(elecprice_provider, monkeypatch):
"""Test requesting an unsupported elecprice_provider."""
monkeypatch.setenv("elecprice_provider", "<invalid>")
elecprice_provider.config.update()
assert elecprice_provider.enabled() == False
# ------------------------------------------------
@@ -68,16 +67,16 @@ def test_invalid_provider(provider, monkeypatch):
@patch("akkudoktoreos.prediction.elecpriceakkudoktor.logger.error")
def test_validate_data_invalid_format(mock_logger, provider):
def test_validate_data_invalid_format(mock_logger, elecprice_provider):
"""Test validation for invalid Akkudoktor data."""
invalid_data = '{"invalid": "data"}'
with pytest.raises(ValueError):
provider._validate_data(invalid_data)
elecprice_provider._validate_data(invalid_data)
mock_logger.assert_called_once_with(mock_logger.call_args[0][0])
@patch("requests.get")
def test_request_forecast(mock_get, provider, sample_akkudoktor_1_json):
def test_request_forecast(mock_get, elecprice_provider, sample_akkudoktor_1_json):
"""Test requesting forecast from Akkudoktor."""
# Mock response object
mock_response = Mock()
@@ -86,10 +85,10 @@ def test_request_forecast(mock_get, provider, sample_akkudoktor_1_json):
mock_get.return_value = mock_response
# Preset, as this is usually done by update()
provider.config.update()
elecprice_provider.config.update()
# Test function
akkudoktor_data = provider._request_forecast()
akkudoktor_data = elecprice_provider._request_forecast()
assert isinstance(akkudoktor_data, AkkudoktorElecPrice)
assert akkudoktor_data.values[0] == AkkudoktorElecPriceValue(
@@ -104,7 +103,7 @@ def test_request_forecast(mock_get, provider, sample_akkudoktor_1_json):
@patch("requests.get")
def test_update_data(mock_get, provider, sample_akkudoktor_1_json, cache_store):
def test_update_data(mock_get, elecprice_provider, sample_akkudoktor_1_json, cache_store):
"""Test fetching forecast from Akkudoktor."""
# Mock response object
mock_response = Mock()
@@ -117,28 +116,28 @@ def test_update_data(mock_get, provider, sample_akkudoktor_1_json, cache_store):
# Call the method
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime("2024-12-11 00:00:00", in_timezone="Europe/Berlin"))
provider.update_data(force_enable=True, force_update=True)
elecprice_provider.update_data(force_enable=True, force_update=True)
# Assert: Verify the result is as expected
mock_get.assert_called_once()
assert (
len(provider) == 73
len(elecprice_provider) == 73
) # we have 48 datasets in the api response, we want to know 48h into the future. The data we get has already 23h into the future so we need only 25h more. 48+25=73
# Assert we get hours prioce values by resampling
np_price_array = provider.key_to_array(
# Assert we get prediction_hours prioce values by resampling
np_price_array = elecprice_provider.key_to_array(
key="elecprice_marketprice_wh",
start_datetime=provider.start_datetime,
end_datetime=provider.end_datetime,
start_datetime=elecprice_provider.start_datetime,
end_datetime=elecprice_provider.end_datetime,
)
assert len(np_price_array) == provider.total_hours
assert len(np_price_array) == elecprice_provider.total_hours
# with open(FILE_TESTDATA_ELECPRICEAKKUDOKTOR_2_JSON, "w") as f_out:
# f_out.write(provider.to_json())
# f_out.write(elecprice_provider.to_json())
@patch("requests.get")
def test_update_data_with_incomplete_forecast(mock_get, provider):
def test_update_data_with_incomplete_forecast(mock_get, elecprice_provider):
"""Test `_update_data` with incomplete or missing forecast data."""
incomplete_data: dict = {"meta": {}, "values": []}
mock_response = Mock()
@@ -146,7 +145,7 @@ def test_update_data_with_incomplete_forecast(mock_get, provider):
mock_response.content = json.dumps(incomplete_data)
mock_get.return_value = mock_response
with pytest.raises(ValueError):
provider._update_data(force_update=True)
elecprice_provider._update_data(force_update=True)
@pytest.mark.parametrize(
@@ -155,7 +154,7 @@ def test_update_data_with_incomplete_forecast(mock_get, provider):
)
@patch("requests.get")
def test_request_forecast_status_codes(
mock_get, provider, sample_akkudoktor_1_json, status_code, exception
mock_get, elecprice_provider, sample_akkudoktor_1_json, status_code, exception
):
"""Test handling of various API status codes."""
mock_response = Mock()
@@ -167,31 +166,31 @@ def test_request_forecast_status_codes(
mock_get.return_value = mock_response
if exception:
with pytest.raises(exception):
provider._request_forecast()
elecprice_provider._request_forecast()
else:
provider._request_forecast()
elecprice_provider._request_forecast()
@patch("akkudoktoreos.utils.cacheutil.CacheFileStore")
def test_cache_integration(mock_cache, provider):
def test_cache_integration(mock_cache, elecprice_provider):
"""Test caching of 8-day electricity price data."""
mock_cache_instance = mock_cache.return_value
mock_cache_instance.get.return_value = None # Simulate no cache
provider._update_data(force_update=True)
elecprice_provider._update_data(force_update=True)
mock_cache_instance.create.assert_called_once()
mock_cache_instance.get.assert_called_once()
def test_key_to_array_resampling(provider):
def test_key_to_array_resampling(elecprice_provider):
"""Test resampling of forecast data to NumPy array."""
provider.update_data(force_update=True)
array = provider.key_to_array(
elecprice_provider.update_data(force_update=True)
array = elecprice_provider.key_to_array(
key="elecprice_marketprice_wh",
start_datetime=provider.start_datetime,
end_datetime=provider.end_datetime,
start_datetime=elecprice_provider.start_datetime,
end_datetime=elecprice_provider.end_datetime,
)
assert isinstance(array, np.ndarray)
assert len(array) == provider.total_hours
assert len(array) == elecprice_provider.total_hours
# ------------------------------------------------
@@ -200,12 +199,12 @@ def test_key_to_array_resampling(provider):
@pytest.mark.skip(reason="For development only")
def test_akkudoktor_development_forecast_data(provider):
def test_akkudoktor_development_forecast_data(elecprice_provider):
"""Fetch data from real Akkudoktor server."""
# Preset, as this is usually done by update_data()
provider.start_datetime = to_datetime("2024-10-26 00:00:00")
elecprice_provider.start_datetime = to_datetime("2024-10-26 00:00:00")
akkudoktor_data = provider._request_forecast()
akkudoktor_data = elecprice_provider._request_forecast()
with open(FILE_TESTDATA_ELECPRICEAKKUDOKTOR_1_JSON, "w") as f_out:
json.dump(akkudoktor_data, f_out, indent=4)

View File

@@ -13,16 +13,12 @@ FILE_TESTDATA_ELECPRICEIMPORT_1_JSON = DIR_TESTDATA.joinpath("import_input_1.jso
@pytest.fixture
def provider(sample_import_1_json, config_eos):
def elecprice_provider(sample_import_1_json, config_eos):
"""Fixture to create a ElecPriceProvider instance."""
settings = {
"elecprice": {
"provider": "ElecPriceImport",
"provider_settings": {
"import_file_path": str(FILE_TESTDATA_ELECPRICEIMPORT_1_JSON),
"import_json": json.dumps(sample_import_1_json),
},
}
"elecprice_provider": "ElecPriceImport",
"elecpriceimport_file_path": str(FILE_TESTDATA_ELECPRICEIMPORT_1_JSON),
"elecpriceimport_json": json.dumps(sample_import_1_json),
}
config_eos.merge_settings_from_dict(settings)
provider = ElecPriceImport()
@@ -43,24 +39,20 @@ def sample_import_1_json():
# ------------------------------------------------
def test_singleton_instance(provider):
def test_singleton_instance(elecprice_provider):
"""Test that ElecPriceForecast behaves as a singleton."""
another_instance = ElecPriceImport()
assert provider is another_instance
assert elecprice_provider is another_instance
def test_invalid_provider(provider, config_eos):
"""Test requesting an unsupported provider."""
def test_invalid_provider(elecprice_provider, config_eos):
"""Test requesting an unsupported elecprice_provider."""
settings = {
"elecprice": {
"provider": "<invalid>",
"provider_settings": {
"import_file_path": str(FILE_TESTDATA_ELECPRICEIMPORT_1_JSON),
},
}
"elecprice_provider": "<invalid>",
"elecpriceimport_file_path": str(FILE_TESTDATA_ELECPRICEIMPORT_1_JSON),
}
config_eos.merge_settings_from_dict(settings)
assert not provider.enabled()
assert not elecprice_provider.enabled()
# ------------------------------------------------
@@ -81,33 +73,35 @@ def test_invalid_provider(provider, config_eos):
("2024-10-27 00:00:00", False), # DST change in Germany (25 hours/ day)
],
)
def test_import(provider, sample_import_1_json, start_datetime, from_file, config_eos):
def test_import(elecprice_provider, sample_import_1_json, start_datetime, from_file, config_eos):
"""Test fetching forecast from Import."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start_datetime, in_timezone="Europe/Berlin"))
if from_file:
config_eos.elecprice.provider_settings.import_json = None
assert config_eos.elecprice.provider_settings.import_json is None
config_eos.elecpriceimport_json = None
assert config_eos.elecpriceimport_json is None
else:
config_eos.elecprice.provider_settings.import_file_path = None
assert config_eos.elecprice.provider_settings.import_file_path is None
provider.clear()
config_eos.elecpriceimport_file_path = None
assert config_eos.elecpriceimport_file_path is None
elecprice_provider.clear()
# Call the method
provider.update_data()
elecprice_provider.update_data()
# Assert: Verify the result is as expected
assert provider.start_datetime is not None
assert provider.total_hours is not None
assert compare_datetimes(provider.start_datetime, ems_eos.start_datetime).equal
assert elecprice_provider.start_datetime is not None
assert elecprice_provider.total_hours is not None
assert compare_datetimes(elecprice_provider.start_datetime, ems_eos.start_datetime).equal
values = sample_import_1_json["elecprice_marketprice_wh"]
value_datetime_mapping = provider.import_datetimes(ems_eos.start_datetime, len(values))
value_datetime_mapping = elecprice_provider.import_datetimes(
ems_eos.start_datetime, len(values)
)
for i, mapping in enumerate(value_datetime_mapping):
assert i < len(provider.records)
assert i < len(elecprice_provider.records)
expected_datetime, expected_value_index = mapping
expected_value = values[expected_value_index]
result_datetime = provider.records[i].date_time
result_value = provider.records[i]["elecprice_marketprice_wh"]
result_datetime = elecprice_provider.records[i].date_time
result_value = elecprice_provider.records[i]["elecprice_marketprice_wh"]
# print(f"{i}: Expected: {expected_datetime}:{expected_value}")
# print(f"{i}: Result: {result_datetime}:{result_value}")

View File

@@ -1,4 +1,4 @@
from unittest.mock import Mock, patch
from unittest.mock import Mock
import pytest
@@ -6,31 +6,22 @@ from akkudoktoreos.devices.inverter import Inverter, InverterParameters
@pytest.fixture
def mock_battery() -> Mock:
def mock_battery():
mock_battery = Mock()
mock_battery.charge_energy = Mock(return_value=(0.0, 0.0))
mock_battery.discharge_energy = Mock(return_value=(0.0, 0.0))
mock_battery.device_id = "battery1"
return mock_battery
@pytest.fixture
def inverter(mock_battery, devices_eos) -> Inverter:
devices_eos.add_device(mock_battery)
def inverter(mock_battery):
mock_self_consumption_predictor = Mock()
mock_self_consumption_predictor.calculate_self_consumption.return_value = 1.0
with patch(
"akkudoktoreos.devices.inverter.get_eos_load_interpolator",
return_value=mock_self_consumption_predictor,
):
iv = Inverter(
InverterParameters(
device_id="iv1", max_power_wh=500.0, battery_id=mock_battery.device_id
),
return Inverter(
mock_self_consumption_predictor,
InverterParameters(max_power_wh=500.0),
battery=mock_battery,
)
devices_eos.add_device(iv)
devices_eos.post_setup()
return iv
def test_process_energy_excess_generation(inverter, mock_battery):

View File

@@ -14,16 +14,12 @@ from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_
@pytest.fixture
def provider(config_eos):
def load_provider(config_eos):
"""Fixture to initialise the LoadAkkudoktor instance."""
settings = {
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"load_provider": "LoadAkkudoktor",
"load_name": "Akkudoktor Profile",
"loadakkudoktor_year_energy": "1000",
},
}
}
config_eos.merge_settings_from_dict(settings)
return LoadAkkudoktor()
@@ -41,8 +37,8 @@ def measurement_eos():
measurement.records.append(
MeasurementDataRecord(
date_time=dt,
load0_mr=load0_mr,
load1_mr=load1_mr,
measurement_load0_mr=load0_mr,
measurement_load1_mr=load1_mr,
)
)
dt += interval
@@ -76,13 +72,13 @@ def test_loadakkudoktor_settings_validator():
assert settings.loadakkudoktor_year_energy == 1234.56
def test_loadakkudoktor_provider_id(provider):
def test_loadakkudoktor_provider_id(load_provider):
"""Test the `provider_id` class method."""
assert provider.provider_id() == "LoadAkkudoktor"
assert load_provider.provider_id() == "LoadAkkudoktor"
@patch("akkudoktoreos.prediction.loadakkudoktor.np.load")
def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, provider):
def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, load_provider):
"""Test the `load_data` method."""
# Mock numpy load to return data similar to what would be in the file
mock_np_load.return_value = {
@@ -91,19 +87,19 @@ def test_load_data_from_mock(mock_np_load, mock_load_profiles_file, provider):
}
# Test data loading
data_year_energy = provider.load_data()
data_year_energy = load_provider.load_data()
assert data_year_energy is not None
assert data_year_energy.shape == (365, 2, 24)
def test_load_data_from_file(provider):
def test_load_data_from_file(load_provider):
"""Test `load_data` loads data from the profiles file."""
data_year_energy = provider.load_data()
data_year_energy = load_provider.load_data()
assert data_year_energy is not None
@patch("akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor.load_data")
def test_update_data(mock_load_data, provider):
def test_update_data(mock_load_data, load_provider):
"""Test the `_update` method."""
mock_load_data.return_value = np.random.rand(365, 2, 24)
@@ -112,27 +108,27 @@ def test_update_data(mock_load_data, provider):
ems_eos.set_start_datetime(pendulum.datetime(2024, 1, 1))
# Assure there are no prediction records
provider.clear()
assert len(provider) == 0
load_provider.clear()
assert len(load_provider) == 0
# Execute the method
provider._update_data()
load_provider._update_data()
# Validate that update_value is called
assert len(provider) > 0
assert len(load_provider) > 0
def test_calculate_adjustment(provider, measurement_eos):
def test_calculate_adjustment(load_provider, measurement_eos):
"""Test `_calculate_adjustment` for various scenarios."""
data_year_energy = np.random.rand(365, 2, 24)
# Call the method and validate results
weekday_adjust, weekend_adjust = provider._calculate_adjustment(data_year_energy)
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
assert weekend_adjust.shape == (24,)
data_year_energy = np.zeros((365, 2, 24))
weekday_adjust, weekend_adjust = provider._calculate_adjustment(data_year_energy)
weekday_adjust, weekend_adjust = load_provider._calculate_adjustment(data_year_energy)
assert weekday_adjust.shape == (24,)
expected = np.array(
@@ -197,7 +193,7 @@ def test_calculate_adjustment(provider, measurement_eos):
np.testing.assert_array_equal(weekend_adjust, expected)
def test_provider_adjustments_with_mock_data(provider):
def test_load_provider_adjustments_with_mock_data(load_provider):
"""Test full integration of adjustments with mock data."""
with patch(
"akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktor._calculate_adjustment"
@@ -205,5 +201,5 @@ def test_provider_adjustments_with_mock_data(provider):
mock_adjust.return_value = (np.zeros(24), np.zeros(24))
# Test execution
provider._update_data()
load_provider._update_data()
assert mock_adjust.called

View File

@@ -3,11 +3,7 @@ import pytest
from pendulum import datetime, duration
from akkudoktoreos.config.config import SettingsEOS
from akkudoktoreos.measurement.measurement import (
MeasurementCommonSettings,
MeasurementDataRecord,
get_measurement,
)
from akkudoktoreos.measurement.measurement import MeasurementDataRecord, get_measurement
@pytest.fixture
@@ -17,33 +13,33 @@ def measurement_eos():
measurement.records = [
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=0),
load0_mr=100,
load1_mr=200,
measurement_load0_mr=100,
measurement_load1_mr=200,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=1),
load0_mr=150,
load1_mr=250,
measurement_load0_mr=150,
measurement_load1_mr=250,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=2),
load0_mr=200,
load1_mr=300,
measurement_load0_mr=200,
measurement_load1_mr=300,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=3),
load0_mr=250,
load1_mr=350,
measurement_load0_mr=250,
measurement_load1_mr=350,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=4),
load0_mr=300,
load1_mr=400,
measurement_load0_mr=300,
measurement_load1_mr=400,
),
MeasurementDataRecord(
date_time=datetime(2023, 1, 1, hour=5),
load0_mr=350,
load1_mr=450,
measurement_load0_mr=350,
measurement_load1_mr=450,
),
]
return measurement
@@ -79,7 +75,7 @@ def test_interval_count_invalid_non_positive_interval(measurement_eos):
def test_energy_from_meter_readings_valid_input(measurement_eos):
"""Test _energy_from_meter_readings with valid inputs and proper alignment of load data."""
key = "load0_mr"
key = "measurement_load0_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
@@ -94,7 +90,7 @@ def test_energy_from_meter_readings_valid_input(measurement_eos):
def test_energy_from_meter_readings_empty_array(measurement_eos):
"""Test _energy_from_meter_readings with no data (empty array)."""
key = "load0_mr"
key = "measurement_load0_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
@@ -116,7 +112,7 @@ def test_energy_from_meter_readings_empty_array(measurement_eos):
def test_energy_from_meter_readings_misaligned_array(measurement_eos):
"""Test _energy_from_meter_readings with misaligned array size."""
key = "load1_mr"
key = "measurement_load1_mr"
start_datetime = measurement_eos.min_datetime
end_datetime = measurement_eos.max_datetime
interval = duration(hours=1)
@@ -134,7 +130,7 @@ def test_energy_from_meter_readings_misaligned_array(measurement_eos):
def test_energy_from_meter_readings_partial_data(measurement_eos, caplog):
"""Test _energy_from_meter_readings with partial data (misaligned but empty array)."""
key = "load2_mr"
key = "measurement_load2_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=1)
@@ -153,7 +149,7 @@ def test_energy_from_meter_readings_partial_data(measurement_eos, caplog):
def test_energy_from_meter_readings_negative_interval(measurement_eos):
"""Test _energy_from_meter_readings with a negative interval."""
key = "load3_mr"
key = "measurement_load3_mr"
start_datetime = datetime(2023, 1, 1, 0)
end_datetime = datetime(2023, 1, 1, 5)
interval = duration(hours=-1)
@@ -190,25 +186,21 @@ def test_load_total_no_data(measurement_eos):
def test_name_to_key(measurement_eos):
"""Test name_to_key functionality."""
settings = SettingsEOS(
measurement=MeasurementCommonSettings(
load0_name="Household",
load1_name="Heat Pump",
)
measurement_load0_name="Household",
measurement_load1_name="Heat Pump",
)
measurement_eos.config.merge_settings(settings)
assert measurement_eos.name_to_key("Household", "load") == "load0_mr"
assert measurement_eos.name_to_key("Heat Pump", "load") == "load1_mr"
assert measurement_eos.name_to_key("Unknown", "load") is None
assert measurement_eos.name_to_key("Household", "measurement_load") == "measurement_load0_mr"
assert measurement_eos.name_to_key("Heat Pump", "measurement_load") == "measurement_load1_mr"
assert measurement_eos.name_to_key("Unknown", "measurement_load") is None
def test_name_to_key_invalid_topic(measurement_eos):
"""Test name_to_key with an invalid topic."""
settings = SettingsEOS(
MeasurementCommonSettings(
load0_name="Household",
load1_name="Heat Pump",
)
measurement_load0_name="Household",
measurement_load1_name="Heat Pump",
)
measurement_eos.config.merge_settings(settings)

View File

@@ -17,6 +17,25 @@ from akkudoktoreos.prediction.weatherclearoutside import WeatherClearOutside
from akkudoktoreos.prediction.weatherimport import WeatherImport
@pytest.fixture
def sample_settings(config_eos):
"""Fixture that adds settings data to the global config."""
settings = {
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 52.52,
"longitude": 13.405,
"weather_provider": None,
"pvforecast_provider": None,
"load_provider": None,
"elecprice_provider": None,
}
# Merge settings to config
config_eos.merge_settings_from_dict(settings)
return config_eos
@pytest.fixture
def prediction():
"""All EOS predictions."""
@@ -40,25 +59,82 @@ def forecast_providers():
@pytest.mark.parametrize(
"field_name, invalid_value, expected_error",
"prediction_hours, prediction_historic_hours, latitude, longitude, expected_timezone",
[
("hours", -1, "Input should be greater than or equal to 0"),
("historic_hours", -5, "Input should be greater than or equal to 0"),
(48, 24, 40.7128, -74.0060, "America/New_York"), # Valid latitude/longitude
(0, 0, None, None, None), # No location
(100, 50, 51.5074, -0.1278, "Europe/London"), # Another valid location
],
)
def test_prediction_common_settings_invalid(field_name, invalid_value, expected_error, config_eos):
def test_prediction_common_settings_valid(
prediction_hours, prediction_historic_hours, latitude, longitude, expected_timezone
):
"""Test valid settings for PredictionCommonSettings."""
settings = PredictionCommonSettings(
prediction_hours=prediction_hours,
prediction_historic_hours=prediction_historic_hours,
latitude=latitude,
longitude=longitude,
)
assert settings.prediction_hours == prediction_hours
assert settings.prediction_historic_hours == prediction_historic_hours
assert settings.latitude == latitude
assert settings.longitude == longitude
assert settings.timezone == expected_timezone
@pytest.mark.parametrize(
"field_name, invalid_value, expected_error",
[
("prediction_hours", -1, "Input should be greater than or equal to 0"),
("prediction_historic_hours", -5, "Input should be greater than or equal to 0"),
("latitude", -91.0, "Input should be greater than or equal to -90"),
("latitude", 91.0, "Input should be less than or equal to 90"),
("longitude", -181.0, "Input should be greater than or equal to -180"),
("longitude", 181.0, "Input should be less than or equal to 180"),
],
)
def test_prediction_common_settings_invalid(field_name, invalid_value, expected_error):
"""Test invalid settings for PredictionCommonSettings."""
valid_data = {
"hours": 48,
"historic_hours": 24,
"prediction_hours": 48,
"prediction_historic_hours": 24,
"latitude": 40.7128,
"longitude": -74.0060,
}
assert PredictionCommonSettings(**valid_data) is not None
valid_data[field_name] = invalid_value
with pytest.raises(ValidationError, match=expected_error):
PredictionCommonSettings(**valid_data)
def test_prediction_common_settings_no_location():
"""Test that timezone is None when latitude and longitude are not provided."""
settings = PredictionCommonSettings(
prediction_hours=48, prediction_historic_hours=24, latitude=None, longitude=None
)
assert settings.timezone is None
def test_prediction_common_settings_with_location():
"""Test that timezone is correctly computed when latitude and longitude are provided."""
settings = PredictionCommonSettings(
prediction_hours=48, prediction_historic_hours=24, latitude=34.0522, longitude=-118.2437
)
assert settings.timezone == "America/Los_Angeles"
def test_prediction_common_settings_timezone_none_when_coordinates_missing():
"""Test that timezone is None when latitude or longitude is missing."""
config_no_latitude = PredictionCommonSettings(longitude=-74.0060)
config_no_longitude = PredictionCommonSettings(latitude=40.7128)
config_no_coords = PredictionCommonSettings()
assert config_no_latitude.timezone is None
assert config_no_longitude.timezone is None
assert config_no_coords.timezone is None
def test_initialization(prediction, forecast_providers):
"""Test that Prediction is initialized with the correct providers in sequence."""
assert isinstance(prediction, Prediction)

View File

@@ -88,31 +88,31 @@ class TestPredictionBase:
@pytest.fixture
def base(self, monkeypatch):
# Provide default values for configuration
monkeypatch.setenv("EOS_PREDICTION__HOURS", "10")
monkeypatch.setenv("latitude", "50.0")
monkeypatch.setenv("longitude", "10.0")
derived = DerivedBase()
derived.config.reset_settings()
assert derived.config.prediction.hours == 10
derived.config.update()
return derived
def test_config_value_from_env_variable(self, base, monkeypatch):
# From Prediction Config
monkeypatch.setenv("EOS_PREDICTION__HOURS", "2")
base.config.reset_settings()
assert base.config.prediction.hours == 2
monkeypatch.setenv("latitude", "2.5")
base.config.update()
assert base.config.latitude == 2.5
def test_config_value_from_field_default(self, base, monkeypatch):
assert base.config.prediction.model_fields["historic_hours"].default == 48
assert base.config.prediction.historic_hours == 48
monkeypatch.setenv("EOS_PREDICTION__HISTORIC_HOURS", "128")
base.config.reset_settings()
assert base.config.prediction.historic_hours == 128
monkeypatch.delenv("EOS_PREDICTION__HISTORIC_HOURS")
base.config.reset_settings()
assert base.config.prediction.historic_hours == 48
assert base.config.model_fields["prediction_hours"].default == 48
assert base.config.prediction_hours == 48
monkeypatch.setenv("prediction_hours", "128")
base.config.update()
assert base.config.prediction_hours == 128
monkeypatch.delenv("prediction_hours")
base.config.update()
assert base.config.prediction_hours == 48
def test_get_config_value_key_error(self, base):
with pytest.raises(AttributeError):
base.config.prediction.non_existent_key
base.config.non_existent_key
# TestPredictionRecord fully covered by TestDataRecord
@@ -159,14 +159,14 @@ class TestPredictionProvider:
"""Test that computed fields `end_datetime` and `keep_datetime` are correctly calculated."""
ems_eos = get_ems()
ems_eos.set_start_datetime(sample_start_datetime)
provider.config.prediction.hours = 24 # 24 hours into the future
provider.config.prediction.historic_hours = 48 # 48 hours into the past
provider.config.prediction_hours = 24 # 24 hours into the future
provider.config.prediction_historic_hours = 48 # 48 hours into the past
expected_end_datetime = sample_start_datetime + to_duration(
provider.config.prediction.hours * 3600
provider.config.prediction_hours * 3600
)
expected_keep_datetime = sample_start_datetime - to_duration(
provider.config.prediction.historic_hours * 3600
provider.config.prediction_historic_hours * 3600
)
assert (
@@ -183,26 +183,31 @@ class TestPredictionProvider:
# EOS config supersedes
ems_eos = get_ems()
# The following values are currently not set in EOS config, we can override
monkeypatch.setenv("EOS_PREDICTION__HISTORIC_HOURS", "2")
assert os.getenv("EOS_PREDICTION__HISTORIC_HOURS") == "2"
provider.config.reset_settings()
monkeypatch.setenv("prediction_historic_hours", "2")
assert os.getenv("prediction_historic_hours") == "2"
monkeypatch.setenv("latitude", "37.7749")
assert os.getenv("latitude") == "37.7749"
monkeypatch.setenv("longitude", "-122.4194")
assert os.getenv("longitude") == "-122.4194"
ems_eos.set_start_datetime(sample_start_datetime)
provider.update_data()
assert provider.config.prediction.hours == config_eos.prediction.hours
assert provider.config.prediction.historic_hours == 2
assert provider.config.prediction_hours == config_eos.prediction_hours
assert provider.config.prediction_historic_hours == 2
assert provider.config.latitude == 37.7749
assert provider.config.longitude == -122.4194
assert provider.start_datetime == sample_start_datetime
assert provider.end_datetime == sample_start_datetime + to_duration(
f"{provider.config.prediction.hours} hours"
f"{provider.config.prediction_hours} hours"
)
assert provider.keep_datetime == sample_start_datetime - to_duration("2 hours")
def test_update_method_force_enable(self, provider, monkeypatch):
"""Test that `update` executes when `force_enable` is True, even if `enabled` is False."""
# Preset values that are needed by update
monkeypatch.setenv("EOS_PREDICTION__LATITUDE", "37.7749")
monkeypatch.setenv("EOS_PREDICTION__LONGITUDE", "-122.4194")
monkeypatch.setenv("latitude", "37.7749")
monkeypatch.setenv("longitude", "-122.4194")
# Override enabled to return False for this test
DerivedPredictionProvider.provider_enabled = False
@@ -283,9 +288,7 @@ class TestPredictionContainer:
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"hours": hours,
}
"prediction_hours": hours,
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(end, in_timezone="Europe/Berlin")
@@ -313,16 +316,14 @@ class TestPredictionContainer:
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"historic_hours": historic_hours,
}
"prediction_historic_hours": historic_hours,
}
container.config.merge_settings_from_dict(settings)
expected = to_datetime(expected_keep, in_timezone="Europe/Berlin")
assert compare_datetimes(container.keep_datetime, expected).equal
@pytest.mark.parametrize(
"start, hours, expected_hours",
"start, prediction_hours, expected_hours",
[
("2024-11-10 00:00:00", 24, 24), # No DST in Germany
("2024-08-10 00:00:00", 24, 24), # DST in Germany
@@ -330,14 +331,12 @@ class TestPredictionContainer:
("2024-10-27 00:00:00", 24, 25), # DST change in Germany (25 hours/ day)
],
)
def test_total_hours(self, container, start, hours, expected_hours):
def test_total_hours(self, container, start, prediction_hours, expected_hours):
"""Test the `total_hours` property."""
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"hours": hours,
}
"prediction_hours": prediction_hours,
}
container.config.merge_settings_from_dict(settings)
assert container.total_hours == expected_hours
@@ -356,9 +355,7 @@ class TestPredictionContainer:
ems_eos = get_ems()
ems_eos.set_start_datetime(to_datetime(start, in_timezone="Europe/Berlin"))
settings = {
"prediction": {
"historic_hours": historic_hours,
}
"prediction_historic_hours": historic_hours,
}
container.config.merge_settings_from_dict(settings)
assert container.keep_hours == expected_hours

Some files were not shown because too many files have changed in this diff Show More