Files
EOS/docs/akkudoktoreos/optimauto.md
Bobby Noelte 58d70e417b feat: add Home Assistant and NodeRED adapters (#764)
Adapters for Home Assistant and NodeRED integration are added.
Akkudoktor-EOS can now be run as Home Assistant add-on and standalone.

As Home Assistant add-on EOS uses ingress to fully integrate the EOSdash dashboard
in Home Assistant.

The fix includes several bug fixes that are not directly related to the adapter
implementation but are necessary to keep EOS running properly and to test and
document the changes.

* fix: development version scheme

  The development versioning scheme is adaptet to fit to docker and
  home assistant expectations. The new scheme is x.y.z and x.y.z.dev<hash>.
  Hash is only digits as expected by home assistant. Development version
  is appended by .dev as expected by docker.

* fix: use mean value in interval on resampling for array

  When downsampling data use the mean value of all values within the new
  sampling interval.

* fix: default battery ev soc and appliance wh

  Make the genetic simulation return default values for the
  battery SoC, electric vehicle SoC and appliance load if these
  assets are not used.

* fix: import json string

  Strip outer quotes from JSON strings on import to be compliant to json.loads()
  expectation.

* fix: default interval definition for import data

  Default interval must be defined in lowercase human definition to
  be accepted by pendulum.

* fix: clearoutside schema change

* feat: add adapters for integrations

  Adapters for Home Assistant and NodeRED integration are added.
  Akkudoktor-EOS can now be run as Home Assistant add-on and standalone.

  As Home Assistant add-on EOS uses ingress to fully integrate the EOSdash dashboard
  in Home Assistant.

* feat: allow eos to be started with root permissions and drop priviledges

  Home assistant starts all add-ons with root permissions. Eos now drops
  root permissions if an applicable user is defined by paramter --run_as_user.
  The docker image defines the user eos to be used.

* feat: make eos supervise and monitor EOSdash

  Eos now not only starts EOSdash but also monitors EOSdash during runtime
  and restarts EOSdash on fault. EOSdash logging is captured by EOS
  and forwarded to the EOS log to provide better visibility.

* feat: add duration to string conversion

  Make to_duration to also return the duration as string on request.

* chore: Use info logging to report missing optimization parameters

  In parameter preparation for automatic optimization an error was logged for missing paramters.
  Log is now down using the info level.

* chore: make EOSdash use the EOS data directory for file import/ export

  EOSdash use the EOS data directory for file import/ export by default.
  This allows to use the configuration import/ export function also
  within docker images.

* chore: improve EOSdash config tab display

  Improve display of JSON code and add more forms for config value update.

* chore: make docker image file system layout similar to home assistant

  Only use /data directory for persistent data. This is handled as a
  docker volume. The /data volume is mapped to ~/.local/share/net.akkudoktor.eos
  if using docker compose.

* chore: add home assistant add-on development environment

  Add VSCode devcontainer and task definition for home assistant add-on
  development.

* chore: improve documentation
2025-12-30 22:08:21 +01:00

16 KiB
Raw Blame History

% SPDX-License-Identifier: Apache-2.0

Automatic Optimization

Introduction

EOS offers two approaches to optimize your energy management system: post /optimize optimization and automatic optimization.

The post /optimize optimization interface, based on a POST request to /optimize, is widely used. It was originally developed by Andreas at the start of the project and is still demonstrated in his instructional videos. This interface allows users or external systems to trigger an optimization manually, supplying custom parameters and timing.

As an alternative, EOS supports automatic optimization, which runs automatically at configured intervals. It retrieves all required input data — including electricity prices, battery storage capacity, PV production forecasts, and temperature data — based on your system configuration.

Genetic Algorithm

Both optimization modes use the same core optimization engine.

EOS uses a genetic algorithm to find an optimal control strategy for home energy devices such as household loads, batteries, and electric vehicles.

In this context, each individual represents a possible solution — a specific control schedule that defines how devices should operate over time. These individuals are evaluated using resource simulations, which model the systems energy behavior over a defined time period divided into fixed intervals.

The quality of each solution (its fitness) is determined by how well it performs during simulation, based on objectives such as minimizing electricity costs, maximizing self-consumption, or meeting battery charge targets.

Through an iterative process of selection, crossover, and mutation, the algorithm gradually evolves more effective solutions. The final result is an optimized control strategy that balances multiple system goals within the constraints of the input data and configuration.

:::{admonition} Note :class: note You dont need to understand the internal workings of the genetic algorithm to benefit from automatic optimization. EOS handles everything behind the scenes based on your configuration. However, advanced users can fine-tune the optimization behavior using additional settings like population size, penalties, and random seed. :::

Energy Management Plan

Whenever the optimization is run, the energy management plan is updated. The energy management plan provides a list of energy management instructions in chronological order. The instructions lean on to the S2 standard to have maximum flexibility and stay completely independent from any manufacturer.

Battery Instructions

The battery control instructions assume an idealized battery model. Under this model, the battery can be operated in four discrete operation modes:

Operation Mode ID Description
IDLE Battery neither charges nor discharges; holds its state of charge.
CHARGE Charge at a specified power rate up to the allowable maximum.
DISCHARGE Discharge at a specified power rate up to the allowable maximum.
ALLOW_DISCHARGE Allow the battery to freely discharge depending on its instantaneous power setpoint.

The operation mode factor (0.01.0) specifies the normalized power rate relative to the battery's nominal maximum charge or discharge power. A value of 1.0 corresponds to full-rate charging or discharging, while 0.0 indicates no power transfer. Intermediate values scale the power proportionally.

Electric Vehicle Instructions

The electric vehicle control instructions assume an idealized EV battery model. Under this model, the EV battery can be operated in two operation modes:

Operation Mode ID Description
IDLE Battery neither charges nor discharges; holds its state of charge.
CHARGE Charge at a specified power rate up to the allowable maximum.

The operation mode factor (0.01.0) specifies the normalized power rate relative to the battery's nominal maximum charge power. A value of 1.0 corresponds to full-rate charging, while 0.0 indicates no power transfer. Intermediate values scale the power proportionally.

Home Appliance Instructions

The home appliance instructions assume an idealized home appliance model. Under this model, the home appliance can be operated in two operation modes:

Operation Mode ID Description
RUN The home appliance is started and runs until the end of it's power sequence.
IDLE The home appliance does not run.

The operation mode factor (0.01.0) is ignored.

Configuration

Energy management configuration

The energy management is run on configured intervals with some startup delay after server start. Both values are given in seconds.

:::{admonition} Note :class: note If no interval is configured (None, null) there will be only one energy management run at startup. :::

The energy management can be run in two modes:

  • OPTIMIZATION: A full optimization is done. This includes update of predictions.
  • PREDICTION: Only the predictions are updated.

Example:

{
    "ems": {
        "startup_delay": 5.0,
        "interval": 300.0,
        "mode": "OPTIMIZATION"
    }
}

Optimization Configuration

Optimization Time Configuration

  • horizon_hours: The optimization horizon parameter defines the default time window — in hours — within which the energy optimization goal shall be achieved.

    Specific devices, like the home appliance, have their own configuration for time windows. If the time windows are not configured the simulation uses the default time window.

    Each device simulation run must ensure that all tasks or appliance cycles (e.g., running a dishwasher) are completed within the configured time windows.

  • interval: Defines the time step in seconds between control actions (e.g. 3600 for one hour, 900 for 15 minutes).

:::{warning} Current Limitation

At present, the interval setting is not used by the genetic algorithm. Instead:

  • The control interval is fixed to 1 hour.

Support for configurable intervals (e.g. 15-minute steps) may be added in a future release. :::

Genetic Algorithm Parameters

The behavior of the genetic algorithm can be customized using the following configuration options:

  • individuals (int, default: 300): Sets the number of individuals (candidate solutions) in the (first) generation. A higher number increases solution diversity and the chance of finding a good result, but also increases computation time.

  • generations (int, default: 400): Sets the number of generations to evaluate the optimal solution. In each generation, solutions are evaluated and evolved. More generations can improve optimization quality but increase computation time. Best results are usually found within a moderate number of generations.

  • seed (int or null, default: null): Sets the random seed for reproducible results.

    • If null, a random seed is used (non-reproducible).

    • If an integer is provided, it ensures that the same optimization input yields the same output.

      A fixed seed to ensure reproducibility. Runs with the same seed and configuration will produce the same results.

  • penalties (dict): Defines how penalties are applied to solutions that violate constraints (e.g., undercharged batteries). Penalty function parameter values influence the fitness score, discouraging undesirable solutions.

:::{note} Supported Penalty Functions

Currently, the only supported penalty function parameter is:

  • ev_soc_miss: Applies a penalty when the state of charge (SOC) of the electric vehicle battery falls below the required minimum. This encourages the optimizer to ensure sufficient EV charging. :::

Value Formats

  • Time-related values:

    • hours: specified in hours (e.g. 24)
    • interval: specified in seconds (e.g. 3600)
  • Genetic algorithm parameters:

    • individuals: must be an integer
    • seed: must be an integer or null for random behavior
  • Penalty function parameter values: may be float, int, or string, depending on the type of penalty function.

Optimization configuration example

{
    "optimization": {
        "hours": 24,
        "interval": 3600,
        "genetic" : {
            "individuals": 300,
            "generations": 400,
            "seed": null,
            "penalties": {
                "ev_soc_miss": 10
            }
        }
    }
}

Device simulation configuration

The device simulations are used to evaluate the fitness of the individuals of the solution population.

The GENETIC algorithm supports 4 devices:

  • inverter: A photovoltaic power inverter that can export to the grid and charge a battery. The inverter is mandatory.
  • electric_vehicle: An electric vehicle, basically the battery of an electric vehicle. The The electrical vehicle is optional.
  • battery: A battery that can be charged by the inverter. The battery is mandatory.
  • home_appliance: A home appliance, like a washing machine or a dish washer. The home appliance is optional.

:::{admonition} Warning :class: warning The GENETIC algorithm can only use the first inverter, electrical vehicle, battery, home appliance that is configured, even if more devices are configured. :::

Inverter simulation configuration

Example:

{
    "devices": {
        "max_inverters": 1,
        "inverters": [
            {
                "device_id": "inv1",
                "max_power_w": 10000,
                "battery_id": "bat1"
            }
        ]
    }
}

Electric vehicle simulation configuration

Example:

{
    "devices": {
        "max_electric_vehicles": 1,
        "electric_vehicles": [
            {
                "device_id": "ev1",
                "capacity_wh": 50000,
                "max_charge_power_w": 10000,
                "charge_rates": [0.0, 0.25, 0.5, 0.75, 1.0],
                "min_soc_percentage": 10,
                "max_soc_percentage": 80
            }
        ]
    },
    "measurement": {
        "electric_vehicle_soc_keys": ["ev1_soc"]
    }
}

Battery simulation configuration

Example:

{
    "devices": {
        "max_batteries": 1,
        "batteries": [
            {
                "device_id": "battery1",
                "capacity_wh": 8000,
                "charging_efficiency": 0.88,
                "discharging_efficiency": 0.88,
                "levelized_cost_of_storage_kwh": 0.12,
                "max_charge_power_w": 8000,
                "min_charge_power_w": 50,
                "charge_rates": null,
                "min_soc_percentage": 5,
                "max_soc_percentage": 95
            }
        ]
    }
}

Home appliance simulation configuration

Example:

{
    "devices": {
        "max_home_appliances": 1,
        "home_appliances": [
            {
                "device_id": "washing machine",
                "consumption_wh": 600,
                "duration_h": 3,
                "time_windows": null,
            }
        ]
    }
}

The time windows the home appliance may run can be configured in several ways. See the time window configuration for details.

Predictions configuration

The device simulation may rely on predictions to simulate proper behaviour. E.g. the inverter needs to know the PV forecast.

Configure the predictions as described on the prediction page.

Providing your own prediction data

If EOS does not have a suitable prediction provider you can provide your own data for a prediction. Configure the respective import provider (ElecPriceImport, LoadImport, PVForecastImport, WeatherImport) and use one of the following endpoints to provide your own data:

  • PUT /v1/prediction/import/ElecPriceImport
  • PUT /v1/prediction/import/LoadImport
  • PUT /v1/prediction/import/PVForecastImport
  • PUT /v1/prediction/import/WeatherImport

Measurement configuration

Predictions and device simulations often rely on measurement data to produce accurate results. For example:

  • A load forecast requires past energy meter readings.
  • A battery simulation needs the current state of charge (SoC) to start from the correct condition.

Before using these features, make sure to configure the measurement as described on the measurement page.

Providing your own measurement data

You can provide your own measurement data to the prediction and simulation engine through the following REST endpoints (see the measurement page for details on the data format):

  • PUT /v1/measurement/data
  • PUT /v1/measurement/dataframe
  • PUT /v1/measurement/series
  • PUT /v1/measurement/value

Example: Supplying Battery and EV SoC

For batteries and electric vehicles, it is strongly recommended to provide current SoC. This ensures that simulations start with the correct state.

The simplest way is to use the /v1/measurement/value endpoint. Assuming the battery is named battery1 and the EV is named ev11:

  1. Use the measurement keys that are pre-configured for your devices. For example:

    {
        "devices": {
            "batteries": [
                {
                "device_id": "battery1", "capacity_wh": 8000,  ...
                "measurement_key_soc_factor": "battery1-soc-factor", ...
                }
            ],
            "electric_vehicles": [
                {
                "device_id": "ev11", "capacity_wh": 8000,  ...
                "measurement_key_soc_factor": "ev11-soc-factor", ...
                }
            ]
        }
    }
    
  2. Record your SoC readings to these keys.

    • Enter the values as factor of total capacity of the respective battery.

In these examples:

  • datetime specifies the timestamp of the measurement.
  • key is the measurement key (e.g. battery1-soc-factor).
  • value is the numeric measurement value (e.g. SoC as factor of total capacity).

Raw HTTP request

PUT http://127.0.0.1:8503/v1/measurement/value?datetime=2025-09-26T16%3A39&key=battery1-soc-factor&value=0.57
PUT http://127.0.0.1:8503/v1/measurement/value?datetime=2025-09-26T16%3A39&key=ev11-soc-factor&value=0.22

Equivalent curl commands

curl -X PUT "http://127.0.0.1:8503/v1/measurement/value?datetime=2025-09-26T16%3A39&key=battery1-soc-factor&value=0.57"
curl -X PUT "http://127.0.0.1:8503/v1/measurement/value?datetime=2025-09-26T16%3A39&key=ev11-soc-factor&value=0.22"

Example: Supplying Load Data

To provide your actual load measurements in Akkudoktor-EOS:

  1. Configure the measurement keys for your load energy meters. For example:

    {
        "measurements": {
            "load_emr_keys": ["my_load_meter_reading", "my_other_load_meter_reading"]
        }
    }
    
  2. Record your meter readings to these keys.

    • Enter the values exactly as your energy meters report them, in kWh.
    • Use the same approach as when supplying battery or EV SoC data.