EOS/modules/class_load_corrector.py

208 lines
9.0 KiB
Python

import json,sys, os
from datetime import datetime, timedelta, timezone
import numpy as np
from pprint import pprint
import pandas as pd
import matplotlib.pyplot as plt
# from sklearn.model_selection import train_test_split, GridSearchCV
# from sklearn.ensemble import GradientBoostingRegressor
# from xgboost import XGBRegressor
# from statsmodels.tsa.statespace.sarimax import SARIMAX
# from tensorflow.keras.models import Sequential
# from tensorflow.keras.layers import Dense, LSTM
# from tensorflow.keras.optimizers import Adam
# from sklearn.preprocessing import MinMaxScaler
# from sklearn.metrics import mean_squared_error, r2_score
import mariadb
# from sqlalchemy import create_engine
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
# Fügen Sie den übergeordneten Pfad zum sys.path hinzu
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import *
from modules.class_load import *
class LoadPredictionAdjuster:
def __init__(self, measured_data, predicted_data, load_forecast):
self.measured_data = measured_data
self.predicted_data = predicted_data
self.load_forecast = load_forecast
self.merged_data = self._merge_data()
self.train_data = None
self.test_data = None
self.weekday_diff = None
self.weekend_diff = None
def _remove_outliers(self, data, threshold=2):
# Berechne den Z-Score der 'Last'-Daten
data['Z-Score'] = np.abs((data['Last'] - data['Last'].mean()) / data['Last'].std())
# Filtere die Daten nach dem Schwellenwert
filtered_data = data[data['Z-Score'] < threshold]
return filtered_data.drop(columns=['Z-Score'])
def _merge_data(self):
# Konvertiere die Zeitspalte in beiden Datenrahmen zu datetime
self.predicted_data['time'] = pd.to_datetime(self.predicted_data['time'])
self.measured_data['time'] = pd.to_datetime(self.measured_data['time'])
# Stelle sicher, dass beide Zeitspalten dieselbe Zeitzone haben
# Measured Data: Setze die Zeitzone auf UTC, falls es tz-naiv ist
if self.measured_data['time'].dt.tz is None:
self.measured_data['time'] = self.measured_data['time'].dt.tz_localize('UTC')
# Predicted Data: Setze ebenfalls UTC und konvertiere anschließend in die lokale Zeitzone
self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize('UTC').dt.tz_convert('Europe/Berlin')
self.measured_data['time'] = self.measured_data['time'].dt.tz_convert('Europe/Berlin')
# Optional: Entferne die Zeitzoneninformation, wenn du nur lokal arbeiten möchtest
self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize(None)
self.measured_data['time'] = self.measured_data['time'].dt.tz_localize(None)
# Jetzt kannst du den Merge durchführen
merged_data = pd.merge(self.measured_data, self.predicted_data, on='time', how='inner')
print(merged_data)
merged_data['Hour'] = merged_data['time'].dt.hour
merged_data['DayOfWeek'] = merged_data['time'].dt.dayofweek
return merged_data
def calculate_weighted_mean(self, train_period_weeks=9, test_period_weeks=1):
self.merged_data = self._remove_outliers(self.merged_data)
train_end_date = self.merged_data['time'].max() - pd.Timedelta(weeks=test_period_weeks)
train_start_date = train_end_date - pd.Timedelta(weeks=train_period_weeks)
test_start_date = train_end_date + pd.Timedelta(hours=1)
test_end_date = test_start_date + pd.Timedelta(weeks=test_period_weeks) - pd.Timedelta(hours=1)
self.train_data = self.merged_data[(self.merged_data['time'] >= train_start_date) & (self.merged_data['time'] <= train_end_date)]
self.test_data = self.merged_data[(self.merged_data['time'] >= test_start_date) & (self.merged_data['time'] <= test_end_date)]
self.train_data['Difference'] = self.train_data['Last'] - self.train_data['Last Pred']
weekdays_train_data = self.train_data[self.train_data['DayOfWeek'] < 5]
weekends_train_data = self.train_data[self.train_data['DayOfWeek'] >= 5]
self.weekday_diff = weekdays_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
self.weekend_diff = weekends_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
def _weighted_mean_diff(self, data):
train_end_date = self.train_data['time'].max()
weights = 1 / (train_end_date - data['time']).dt.days.replace(0, np.nan)
weighted_mean = (data['Difference'] * weights).sum() / weights.sum()
return weighted_mean
def adjust_predictions(self):
self.train_data['Adjusted Pred'] = self.train_data.apply(self._adjust_row, axis=1)
self.test_data['Adjusted Pred'] = self.test_data.apply(self._adjust_row, axis=1)
def _adjust_row(self, row):
if row['DayOfWeek'] < 5:
return row['Last Pred'] + self.weekday_diff.get(row['Hour'], 0)
else:
return row['Last Pred'] + self.weekend_diff.get(row['Hour'], 0)
def plot_results(self):
self._plot_data(self.train_data, 'Training')
self._plot_data(self.test_data, 'Testing')
def _plot_data(self, data, data_type):
plt.figure(figsize=(14, 7))
plt.plot(data['time'], data['Last'], label=f'Actual Last - {data_type}', color='blue')
plt.plot(data['time'], data['Last Pred'], label=f'Predicted Last - {data_type}', color='red', linestyle='--')
plt.plot(data['time'], data['Adjusted Pred'], label=f'Adjusted Predicted Last - {data_type}', color='green', linestyle=':')
plt.xlabel('Time')
plt.ylabel('Load')
plt.title(f'Actual vs Predicted vs Adjusted Predicted Load ({data_type} Data)')
plt.legend()
plt.grid(True)
plt.show()
def evaluate_model(self):
mse = mean_squared_error(self.test_data['Last'], self.test_data['Adjusted Pred'])
r2 = r2_score(self.test_data['Last'], self.test_data['Adjusted Pred'])
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
def predict_next_hours(self, hours_ahead):
last_date = self.merged_data['time'].max()
future_dates = [last_date + pd.Timedelta(hours=i) for i in range(1, hours_ahead + 1)]
future_df = pd.DataFrame({'time': future_dates})
future_df['Hour'] = future_df['time'].dt.hour
future_df['DayOfWeek'] = future_df['time'].dt.dayofweek
future_df['Last Pred'] = future_df['time'].apply(self._forecast_next_hours)
future_df['Adjusted Pred'] = future_df.apply(self._adjust_row, axis=1)
return future_df
def _forecast_next_hours(self, timestamp):
date_str = timestamp.strftime('%Y-%m-%d')
hour = timestamp.hour
daily_forecast = self.load_forecast.get_daily_stats(date_str)
return daily_forecast[0][hour] if hour < len(daily_forecast[0]) else np.nan
# if __name__ == '__main__':
# estimator = LastEstimator()
# start_date = "2024-06-01"
# end_date = "2024-08-01"
# last_df = estimator.get_last(start_date, end_date)
# selected_columns = last_df[['timestamp', 'Last']]
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
# # Drop rows with NaN values
# cleaned_data = selected_columns.dropna()
# print(cleaned_data)
# # Create an instance of LoadForecast
# lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000)
# # Initialize an empty DataFrame to hold the forecast data
# forecast_list = []
# # Loop through each day in the date range
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
# date_str = single_date.strftime('%Y-%m-%d')
# daily_forecast = lf.get_daily_stats(date_str)
# mean_values = daily_forecast[0] # Extract the mean values
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
# forecast_list.append(daily_forecast_df)
# # Concatenate all daily forecasts into a single DataFrame
# forecast_df = pd.concat(forecast_list, ignore_index=True)
# # Create an instance of the LoadPredictionAdjuster class
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
# # Calculate the weighted mean differences
# adjuster.calculate_weighted_mean()
# # Adjust the predictions
# adjuster.adjust_predictions()
# # Plot the results
# adjuster.plot_results()
# # Evaluate the model
# adjuster.evaluate_model()
# # Predict the next x hours
# future_predictions = adjuster.predict_next_hours(48)
# print(future_predictions)