mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
256 lines
10 KiB
Python
256 lines
10 KiB
Python
"""Retrieves and processes electricity price forecast data from Akkudoktor.
|
|
|
|
This module provides classes and mappings to manage electricity price data obtained from the
|
|
Akkudoktor API, including support for various electricity price attributes such as temperature,
|
|
humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPriceDataRecord`
|
|
format, enabling consistent access to forecasted and historical electricity price attributes.
|
|
"""
|
|
|
|
from typing import Any, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import requests
|
|
from pydantic import ValidationError
|
|
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
|
|
|
from akkudoktoreos.core.logging import get_logger
|
|
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
|
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
|
|
from akkudoktoreos.utils.cacheutil import cache_in_file
|
|
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class AkkudoktorElecPriceMeta(PydanticBaseModel):
|
|
start_timestamp: str
|
|
end_timestamp: str
|
|
start: str
|
|
end: str
|
|
|
|
|
|
class AkkudoktorElecPriceValue(PydanticBaseModel):
|
|
start_timestamp: int
|
|
end_timestamp: int
|
|
start: str
|
|
end: str
|
|
marketprice: float
|
|
unit: str
|
|
marketpriceEurocentPerKWh: float
|
|
|
|
|
|
class AkkudoktorElecPrice(PydanticBaseModel):
|
|
meta: AkkudoktorElecPriceMeta
|
|
values: List[AkkudoktorElecPriceValue]
|
|
|
|
|
|
class ElecPriceAkkudoktor(ElecPriceProvider):
|
|
"""Fetch and process electricity price forecast data from Akkudoktor.
|
|
|
|
ElecPriceAkkudoktor is a singleton-based class that retrieves electricity price forecast data
|
|
from the Akkudoktor API and maps it to `ElecPriceDataRecord` fields, applying
|
|
any necessary scaling or unit corrections. It manages the forecast over a range
|
|
of hours into the future and retains historical data.
|
|
|
|
Attributes:
|
|
hours (int, optional): Number of hours in the future for the forecast.
|
|
historic_hours (int, optional): Number of past hours for retaining data.
|
|
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
|
|
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
|
|
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
|
|
|
|
Methods:
|
|
provider_id(): Returns a unique identifier for the provider.
|
|
_request_forecast(): Fetches the forecast from the Akkudoktor API.
|
|
_update_data(): Processes and updates forecast data from Akkudoktor in ElecPriceDataRecord format.
|
|
"""
|
|
|
|
@classmethod
|
|
def provider_id(cls) -> str:
|
|
"""Return the unique identifier for the Akkudoktor provider."""
|
|
return "ElecPriceAkkudoktor"
|
|
|
|
@classmethod
|
|
def _validate_data(cls, json_str: Union[bytes, Any]) -> AkkudoktorElecPrice:
|
|
"""Validate Akkudoktor Electricity Price forecast data."""
|
|
try:
|
|
akkudoktor_data = AkkudoktorElecPrice.model_validate_json(json_str)
|
|
except ValidationError as e:
|
|
error_msg = ""
|
|
for error in e.errors():
|
|
field = " -> ".join(str(x) for x in error["loc"])
|
|
message = error["msg"]
|
|
error_type = error["type"]
|
|
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
|
|
logger.error(f"Akkudoktor schema change: {error_msg}")
|
|
raise ValueError(error_msg)
|
|
return akkudoktor_data
|
|
|
|
@cache_in_file(with_ttl="1 hour")
|
|
def _request_forecast(self) -> AkkudoktorElecPrice:
|
|
"""Fetch electricity price forecast data from Akkudoktor API.
|
|
|
|
This method sends a request to Akkudoktor's API to retrieve forecast data for a specified
|
|
date range. The response data is parsed and returned as JSON for further processing.
|
|
|
|
Returns:
|
|
dict: The parsed JSON response from Akkudoktor API containing forecast data.
|
|
|
|
Raises:
|
|
ValueError: If the API response does not include expected `electricity price` data.
|
|
|
|
Todo:
|
|
- add the file cache again.
|
|
"""
|
|
source = "https://api.akkudoktor.net"
|
|
assert self.start_datetime # mypy fix
|
|
# Try to take data from 5 weeks back for prediction
|
|
date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD")
|
|
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
|
|
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.general.timezone}"
|
|
response = requests.get(url)
|
|
logger.debug(f"Response from {url}: {response}")
|
|
response.raise_for_status() # Raise an error for bad responses
|
|
akkudoktor_data = self._validate_data(response.content)
|
|
# We are working on fresh data (no cache), report update time
|
|
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
|
|
return akkudoktor_data
|
|
|
|
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
|
|
mean = data.mean()
|
|
std = data.std()
|
|
lower_bound = mean - sigma * std
|
|
upper_bound = mean + sigma * std
|
|
capped_data = data.clip(min=lower_bound, max=upper_bound)
|
|
return capped_data
|
|
|
|
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray:
|
|
clean_history = self._cap_outliers(history)
|
|
model = ExponentialSmoothing(
|
|
clean_history, seasonal="add", seasonal_periods=seasonal_periods
|
|
).fit()
|
|
return model.forecast(hours)
|
|
|
|
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray:
|
|
clean_history = self._cap_outliers(history)
|
|
return np.full(hours, np.median(clean_history))
|
|
|
|
def _update_data(
|
|
self, force_update: Optional[bool] = False
|
|
) -> None: # tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Update forecast data in the ElecPriceDataRecord format.
|
|
|
|
Retrieves data from Akkudoktor, maps each Akkudoktor field to the corresponding
|
|
`ElecPriceDataRecord` and applies any necessary scaling.
|
|
|
|
The final mapped and processed data is inserted into the sequence as `ElecPriceDataRecord`.
|
|
"""
|
|
# Get Akkudoktor electricity price data
|
|
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
|
|
assert self.start_datetime # mypy fix
|
|
|
|
# Assumption that all lists are the same length and are ordered chronologically
|
|
# in ascending order and have the same timestamps.
|
|
|
|
# Get charges_kwh in wh
|
|
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000
|
|
|
|
highest_orig_datetime = None # newest datetime from the api after that we want to update.
|
|
series_data = pd.Series(dtype=float) # Initialize an empty series
|
|
|
|
for value in akkudoktor_data.values:
|
|
orig_datetime = to_datetime(value.start, in_timezone=self.config.general.timezone)
|
|
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
|
|
highest_orig_datetime = orig_datetime
|
|
|
|
price_wh = value.marketpriceEurocentPerKWh / (100 * 1000) + charges_wh
|
|
|
|
# Collect all values into the Pandas Series
|
|
series_data.at[orig_datetime] = price_wh
|
|
|
|
# Update values using key_from_series
|
|
self.key_from_series("elecprice_marketprice_wh", series_data)
|
|
|
|
# Generate history array for prediction
|
|
history = self.key_to_array(
|
|
key="elecprice_marketprice_wh", end_datetime=highest_orig_datetime, fill_method="linear"
|
|
)
|
|
|
|
amount_datasets = len(self.records)
|
|
assert highest_orig_datetime # mypy fix
|
|
|
|
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
|
|
needed_hours = int(
|
|
self.config.prediction.hours
|
|
- ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
|
|
)
|
|
|
|
if needed_hours <= 0:
|
|
logger.warning(
|
|
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
|
|
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records
|
|
return
|
|
|
|
if amount_datasets > 800: # we do the full ets with seasons of 1 week
|
|
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours)
|
|
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
|
|
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours)
|
|
elif amount_datasets > 0: # not enough data for ets, do median
|
|
prediction = self._predict_median(history, hours=needed_hours)
|
|
else:
|
|
logger.error("No data available for prediction")
|
|
raise ValueError("No data available")
|
|
|
|
# write predictions into the records, update if exist.
|
|
prediction_series = pd.Series(
|
|
data=prediction,
|
|
index=[
|
|
highest_orig_datetime + to_duration(f"{i + 1} hours")
|
|
for i in range(len(prediction))
|
|
],
|
|
)
|
|
self.key_from_series("elecprice_marketprice_wh", prediction_series)
|
|
|
|
# history2 = self.key_to_array(key="elecprice_marketprice_wh", fill_method="linear") + 0.0002
|
|
# return history, history2, prediction # for debug main
|
|
|
|
|
|
"""
|
|
def visualize_predictions(
|
|
history: np.ndarray[Any, Any],
|
|
history2: np.ndarray[Any, Any],
|
|
predictions: np.ndarray[Any, Any],
|
|
) -> None:
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.figure(figsize=(28, 14))
|
|
plt.plot(range(len(history)), history, label="History", color="green")
|
|
plt.plot(range(len(history2)), history2, label="History_new", color="blue")
|
|
plt.plot(
|
|
range(len(history), len(history) + len(predictions)),
|
|
predictions,
|
|
label="Predictions",
|
|
color="red",
|
|
)
|
|
plt.title("Predictions ets")
|
|
plt.xlabel("Time")
|
|
plt.ylabel("Price")
|
|
plt.legend()
|
|
plt.savefig("predictions_vs_true.png")
|
|
plt.close()
|
|
|
|
|
|
def main() -> None:
|
|
# Initialize ElecPriceAkkudoktor with required parameters
|
|
elec_price_akkudoktor = ElecPriceAkkudoktor()
|
|
history, history2, predictions = elec_price_akkudoktor._update_data()
|
|
|
|
visualize_predictions(history, history2, predictions)
|
|
# print(history, history2, predictions)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
"""
|